A General Symbolic Approach to Kolmogorov-Sinai Entropy

被引:10
|
作者
Stolz, Inga [1 ]
Keller, Karsten [1 ]
机构
[1] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
来源
ENTROPY | 2017年 / 19卷 / 12期
关键词
symbolization; KS entropy; generating partitions; sigma-algebras; PERMUTATION ENTROPY; PARTITION; DYNAMICS;
D O I
10.3390/e19120675
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is popular to study a time-dependent nonlinear system by encoding outcomes of measurements into sequences of symbols following certain symbolization schemes. Mostly, symbolizations by threshold crossings or variants of it are applied, but also, the relatively new symbolic approach, which goes back to innovative works of Bandt and Pompe-ordinal symbolic dynamics-plays an increasing role. In this paper, we discuss both approaches novelly in one breath with respect to the theoretical determination of the Kolmogorov-Sinai entropy (KS entropy). For this purpose, we propose and investigate a unifying approach to formalize symbolizations. By doing so, we can emphasize the main advantage of the ordinal approach if no symbolization scheme can be found that characterizes KS entropy directly: the ordinal approach, as well as generalizations of it provide, under very natural conditions, a direct route to KS entropy by default.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate
    Eugenio Bianchi
    Lucas Hackl
    Nelson Yokomizo
    Journal of High Energy Physics, 2018
  • [22] RELATION BETWEEN DIVERGENCE OF TRAJECTORIES AND KOLMOGOROV-SINAI ENTROPY
    CASATI, G
    DIANA, E
    SCOTTI, A
    PHYSICS LETTERS A, 1976, 56 (01) : 5 - 6
  • [23] Holographic Kolmogorov-Sinai entropy and the quantum Lyapunov spectrum
    Maier, Georg
    Schaefer, Andreas
    Waeber, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [24] Kolmogorov-Sinai entropy for p-preserving systems
    Khare, Mona
    Shukla, Anurag
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2018, 9 (01) : 37 - 53
  • [25] Entropy functionals of Kolmogorov-Sinai type and their limit theorems
    Muraki, N
    Ohya, M
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (03) : 327 - 335
  • [26] Holographic Kolmogorov-Sinai entropy and the quantum Lyapunov spectrum
    Georg Maier
    Andreas Schäfer
    Sebastian Waeber
    Journal of High Energy Physics, 2022
  • [27] A radius of curvature approach to the Kolmogorov-Sinai entropy of dilute hard particles in equilibrium
    de Wijn, Astrid S.
    van Beijeren, Henk
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [28] Kolmogorov-Sinai entropy of the dilute wet granular gas
    Fingerle, A
    Herminghaus, S
    Zaburdaev, V
    PHYSICAL REVIEW LETTERS, 2005, 95 (19)
  • [29] Extensivity and additivity of the Kolmogorov-Sinai entropy for simple fluids
    Das, Moupriya
    Costa, Anthony B.
    Green, Jason R.
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [30] Chaos in three-body dynamics:: Kolmogorov-Sinai entropy
    Heinämäki, P
    Lehto, HJ
    Valtonen, MJ
    Chernin, AD
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (03) : 811 - 822