A General Symbolic Approach to Kolmogorov-Sinai Entropy

被引:10
|
作者
Stolz, Inga [1 ]
Keller, Karsten [1 ]
机构
[1] Univ Lubeck, Inst Math, Ratzeburger Allee 160, D-23562 Lubeck, Germany
来源
ENTROPY | 2017年 / 19卷 / 12期
关键词
symbolization; KS entropy; generating partitions; sigma-algebras; PERMUTATION ENTROPY; PARTITION; DYNAMICS;
D O I
10.3390/e19120675
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is popular to study a time-dependent nonlinear system by encoding outcomes of measurements into sequences of symbols following certain symbolization schemes. Mostly, symbolizations by threshold crossings or variants of it are applied, but also, the relatively new symbolic approach, which goes back to innovative works of Bandt and Pompe-ordinal symbolic dynamics-plays an increasing role. In this paper, we discuss both approaches novelly in one breath with respect to the theoretical determination of the Kolmogorov-Sinai entropy (KS entropy). For this purpose, we propose and investigate a unifying approach to formalize symbolizations. By doing so, we can emphasize the main advantage of the ordinal approach if no symbolization scheme can be found that characterizes KS entropy directly: the ordinal approach, as well as generalizations of it provide, under very natural conditions, a direct route to KS entropy by default.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Detrended fluctuation analysis and Kolmogorov-Sinai entropy of electroencephalogram signals
    Lim, Jung Ho
    Khang, Eun Joo
    Lee, Tae Hyun
    Kim, In Hye
    Maeng, Seong Eun
    Lee, Jae Woo
    PHYSICS LETTERS A, 2013, 377 (38) : 2542 - 2545
  • [32] Kolmogorov-Sinai entropy for locally coupled piecewise linear maps
    Batista, AM
    Viana, RL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 308 (1-4) : 125 - 134
  • [33] KOLMOGOROV-SINAI TYPE LOGICAL ENTROPY FOR GENERALIZED SIMULTANEOUS MEASUREMENTS
    Shukla, Anurag
    Khare, Mona
    Pandey, Pratibha
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 21 - 40
  • [34] Kolmogorov-Sinai entropy of many-body Hamiltonian systems
    Lakshminarayan, Arul
    Tomsovic, Steven
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [35] Kolmogorov-Sinai entropy and dissipation in driven classical Hamiltonian systems
    Capela, Matheus
    Sanz, Mikel
    Solano, Enrique
    Celeri, Lucas C.
    PHYSICAL REVIEW E, 2018, 98 (05):
  • [36] Ordinal Pattern Based Entropies and the Kolmogorov-Sinai Entropy: An Update
    Gutjahr, Tim
    Keller, Karsten
    ENTROPY, 2020, 22 (01) : 63
  • [37] Kolmogorov-Sinai entropy for dilute systems of hard particles in equilibrium
    de Wijn, AS
    PHYSICAL REVIEW E, 2005, 71 (04):
  • [38] Universal relation between the Kolmogorov-Sinai entropy and the thermodynamical entropy in simple liquids
    Dzugutov, M
    Aurell, E
    Vulpiani, A
    PHYSICAL REVIEW LETTERS, 1998, 81 (09) : 1762 - 1765
  • [40] Kolmogorov-Sinai entropy in self-consistent models of barred galaxies
    Wozniak, H
    Pfenniger, D
    XVTH IAP MEETING DYNAMICS OF GALAXIES: FROM THE EARLY UNIVERSE TO THE PRESENT, 2000, 197 : 77 - 78