Holographic Kolmogorov-Sinai entropy and the quantum Lyapunov spectrum

被引:0
|
作者
Georg Maier
Andreas Schäfer
Sebastian Waeber
机构
[1] University of Regensburg,Institute of Theoretical Physics
[2] Technion,Department of Physics
[3] University of Washington,Department of Physics
关键词
Black Holes; AdS-CFT Correspondence; Gauge-Gravity Correspondence; Holography and quark-gluon plasmas;
D O I
暂无
中图分类号
学科分类号
摘要
In classical chaotic systems the entropy, averaged over initial phase space distributions, follows a universal behavior. While approaching thermal equilibrium it passes through a stage where it grows linearly, while the growth rate, the Kolmogorov-Sinai entropy (rate), is given by the sum over all positive Lyapunov exponents. A natural question is whether a similar relation is valid for quantum systems. We argue that the Maldacena-Shenker-Stanford bound on quantum Lyapunov exponents implies that the upper bound on the growth rate of the entropy, averaged over states in Hilbert space that evolve towards a thermal state with temperature T, should be given by πT times the thermal state’s von Neumann entropy. Strongly coupled, large N theories with black hole duals should saturate the bound. To test this we study a large number of isotropization processes of random, spatially homogeneous, far from equilibrium initial states in large N, N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super Yang Mills theory at strong coupling and compute the ensemble averaged growth rate of the dual black hole’s apparent horizon area. We find both an analogous behavior as in classical chaotic systems and numerical evidence that the conjectured bound on averaged entropy growth is saturated granted that the Lyapunov exponents are degenerate and given by λi = ±2πT. This fits to the behavior of classical systems with plus/minus symmetric Lyapunov spectra, a symmetry which implies the validity of Liouville’s theorem.
引用
收藏
相关论文
共 50 条
  • [1] Holographic Kolmogorov-Sinai entropy and the quantum Lyapunov spectrum
    Maier, Georg
    Schaefer, Andreas
    Waeber, Sebastian
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [2] Quantum Kolmogorov-Sinai entropy and Pesin relation
    Goldfriend, Tomer
    Kurchan, Jorge
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [3] PERMUTATIONS AND THE KOLMOGOROV-SINAI ENTROPY
    Keller, Karsten
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (03) : 891 - 900
  • [4] KOLMOGOROV-SINAI ENTROPY AND LYAPUNOV SPECTRUM OF A ONE-DIMENSIONAL PHI(4)-LATTICE MODEL
    MUTSCHKE, G
    BAHR, U
    PHYSICA D, 1993, 69 (3-4): : 302 - 308
  • [5] Kolmogorov-Sinai entropy and Lyapunov spectra of a hard-sphere gas
    Dellago, C
    Posch, HA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 240 (1-2) : 68 - 83
  • [7] Observational Modeling of the Kolmogorov-Sinai Entropy
    Mohammadi, Uosef
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2019, 13 (01): : 101 - 114
  • [8] A standardized approach to the Kolmogorov-Sinai entropy
    Keller, K.
    Sinn, M.
    NONLINEARITY, 2009, 22 (10) : 2417 - 2422
  • [9] An algebraic approach to the Kolmogorov-Sinai entropy
    Alicki, R
    Andries, J
    Fannes, M
    Tuyls, P
    REVIEWS IN MATHEMATICAL PHYSICS, 1996, 8 (02) : 167 - 184
  • [10] Kolmogorov-Sinai entropy and black holes
    Ropotenko, Kostyantyn
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (19)