Holographic Kolmogorov-Sinai entropy and the quantum Lyapunov spectrum

被引:0
|
作者
Georg Maier
Andreas Schäfer
Sebastian Waeber
机构
[1] University of Regensburg,Institute of Theoretical Physics
[2] Technion,Department of Physics
[3] University of Washington,Department of Physics
关键词
Black Holes; AdS-CFT Correspondence; Gauge-Gravity Correspondence; Holography and quark-gluon plasmas;
D O I
暂无
中图分类号
学科分类号
摘要
In classical chaotic systems the entropy, averaged over initial phase space distributions, follows a universal behavior. While approaching thermal equilibrium it passes through a stage where it grows linearly, while the growth rate, the Kolmogorov-Sinai entropy (rate), is given by the sum over all positive Lyapunov exponents. A natural question is whether a similar relation is valid for quantum systems. We argue that the Maldacena-Shenker-Stanford bound on quantum Lyapunov exponents implies that the upper bound on the growth rate of the entropy, averaged over states in Hilbert space that evolve towards a thermal state with temperature T, should be given by πT times the thermal state’s von Neumann entropy. Strongly coupled, large N theories with black hole duals should saturate the bound. To test this we study a large number of isotropization processes of random, spatially homogeneous, far from equilibrium initial states in large N, N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super Yang Mills theory at strong coupling and compute the ensemble averaged growth rate of the dual black hole’s apparent horizon area. We find both an analogous behavior as in classical chaotic systems and numerical evidence that the conjectured bound on averaged entropy growth is saturated granted that the Lyapunov exponents are degenerate and given by λi = ±2πT. This fits to the behavior of classical systems with plus/minus symmetric Lyapunov spectra, a symmetry which implies the validity of Liouville’s theorem.
引用
收藏
相关论文
共 50 条
  • [21] An approach to comparing Kolmogorov-Sinai and permutation entropy
    Unakafova, V. A.
    Unakafov, A. M.
    Keller, K.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (02): : 353 - 361
  • [22] The ordinal Kolmogorov-Sinai entropy: A generalized approximation
    Fouda, J. S. Armand Eyebe
    Koepf, Wolfram
    Jacquir, Sabir
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 46 : 103 - 115
  • [23] Kolmogorov-Sinai entropy from the ordinal viewpoint
    Keller, Karsten
    Sinn, Mathieu
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (12) : 997 - 1000
  • [24] Eigenvalue Estimates Using the Kolmogorov-Sinai Entropy
    Shieh, Shih-Feng
    ENTROPY, 2011, 13 (12): : 2036 - 2048
  • [25] An approach to comparing Kolmogorov-Sinai and permutation entropy
    V.A. Unakafova
    A.M. Unakafov
    K. Keller
    The European Physical Journal Special Topics, 2013, 222 : 353 - 361
  • [26] A General Symbolic Approach to Kolmogorov-Sinai Entropy
    Stolz, Inga
    Keller, Karsten
    ENTROPY, 2017, 19 (12):
  • [27] Kolmogorov-Sinai entropy for dilute gases in equilibrium
    vanBeijeren, H
    Dorfman, JR
    Posch, HA
    Dellago, C
    PHYSICAL REVIEW E, 1997, 56 (05): : 5272 - 5277
  • [28] Kolmogorov-Sinai entropy from recurrence times
    Baptista, M. S.
    Ngamga, E. J.
    Pinto, Paulo R. F.
    Brito, Margarida
    Kurths, J.
    PHYSICS LETTERS A, 2010, 374 (09) : 1135 - 1140
  • [29] The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized
    Amigo, Jose M.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (07) : 789 - 793
  • [30] MEAN-FIELD THEORY FOR LYAPUNOV EXPONENTS AND KOLMOGOROV-SINAI ENTROPY IN LORENTZ LATTICE GASES
    ENRST, MH
    DORFMAN, JR
    NIX, R
    JACOBS, D
    PHYSICAL REVIEW LETTERS, 1995, 74 (22) : 4416 - 4419