Holographic Kolmogorov-Sinai entropy and the quantum Lyapunov spectrum

被引:0
|
作者
Georg Maier
Andreas Schäfer
Sebastian Waeber
机构
[1] University of Regensburg,Institute of Theoretical Physics
[2] Technion,Department of Physics
[3] University of Washington,Department of Physics
关键词
Black Holes; AdS-CFT Correspondence; Gauge-Gravity Correspondence; Holography and quark-gluon plasmas;
D O I
暂无
中图分类号
学科分类号
摘要
In classical chaotic systems the entropy, averaged over initial phase space distributions, follows a universal behavior. While approaching thermal equilibrium it passes through a stage where it grows linearly, while the growth rate, the Kolmogorov-Sinai entropy (rate), is given by the sum over all positive Lyapunov exponents. A natural question is whether a similar relation is valid for quantum systems. We argue that the Maldacena-Shenker-Stanford bound on quantum Lyapunov exponents implies that the upper bound on the growth rate of the entropy, averaged over states in Hilbert space that evolve towards a thermal state with temperature T, should be given by πT times the thermal state’s von Neumann entropy. Strongly coupled, large N theories with black hole duals should saturate the bound. To test this we study a large number of isotropization processes of random, spatially homogeneous, far from equilibrium initial states in large N, N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Super Yang Mills theory at strong coupling and compute the ensemble averaged growth rate of the dual black hole’s apparent horizon area. We find both an analogous behavior as in classical chaotic systems and numerical evidence that the conjectured bound on averaged entropy growth is saturated granted that the Lyapunov exponents are degenerate and given by λi = ±2πT. This fits to the behavior of classical systems with plus/minus symmetric Lyapunov spectra, a symmetry which implies the validity of Liouville’s theorem.
引用
收藏
相关论文
共 50 条
  • [31] Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate
    Bianchi, Eugenio
    Hackl, Lucas
    Yokomizo, Nelson
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [32] Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate
    Eugenio Bianchi
    Lucas Hackl
    Nelson Yokomizo
    Journal of High Energy Physics, 2018
  • [33] RELATION BETWEEN DIVERGENCE OF TRAJECTORIES AND KOLMOGOROV-SINAI ENTROPY
    CASATI, G
    DIANA, E
    SCOTTI, A
    PHYSICS LETTERS A, 1976, 56 (01) : 5 - 6
  • [34] Hamilton-Jacobi formulation of Kolmogorov-Sinai entropy for classical and quantum dynamics
    Partovi, MH
    PHYSICAL REVIEW LETTERS, 2002, 89 (14) : 4 - 144101
  • [35] Kolmogorov-Sinai entropy for p-preserving systems
    Khare, Mona
    Shukla, Anurag
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2018, 9 (01) : 37 - 53
  • [36] Entropy functionals of Kolmogorov-Sinai type and their limit theorems
    Muraki, N
    Ohya, M
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (03) : 327 - 335
  • [37] Kolmogorov-Sinai entropy of the dilute wet granular gas
    Fingerle, A
    Herminghaus, S
    Zaburdaev, V
    PHYSICAL REVIEW LETTERS, 2005, 95 (19)
  • [38] Extensivity and additivity of the Kolmogorov-Sinai entropy for simple fluids
    Das, Moupriya
    Costa, Anthony B.
    Green, Jason R.
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [39] Chaos in three-body dynamics:: Kolmogorov-Sinai entropy
    Heinämäki, P
    Lehto, HJ
    Valtonen, MJ
    Chernin, AD
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (03) : 811 - 822
  • [40] Detrended fluctuation analysis and Kolmogorov-Sinai entropy of electroencephalogram signals
    Lim, Jung Ho
    Khang, Eun Joo
    Lee, Tae Hyun
    Kim, In Hye
    Maeng, Seong Eun
    Lee, Jae Woo
    PHYSICS LETTERS A, 2013, 377 (38) : 2542 - 2545