Bayesian Cramer-Rao bound for dynamical phase offset estimation

被引:0
|
作者
Bay, S. [1 ]
Herzet, C. [2 ]
Brossier, J. M. [3 ]
Barbot, J. P. [1 ]
Renaux, A. [4 ]
Geller, B. [1 ]
机构
[1] ENS Cachan, SATIE, 61 Av du President Wilson, F-94230 Cachan, France
[2] Univ Calif Berkeley, Wireless Fdn, Dept EECS, Berkeley, CA 94720 USA
[3] INPG, LIS, F-38402 St Martin Dheres, France
[4] Washington Univ, St Louis, MO 63130 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a closed-form expression of a Bayesian Cramer-Rao lower bound for the estimation of a dynamical phase offset for a random BPSK sequence in an AWGN channel. The received symbols are disturbed by carrier phase offset which follows a Wiener model. Considering a received observation sequence, we provide a first analytical expression of the Bayesian CRB. Then, we derive an asymptote-based lower bound which provides an interesting alternative between accuracy and computational cost.
引用
收藏
页码:285 / +
页数:2
相关论文
共 50 条
  • [21] Bayesian Cramer-Rao Bound for Distributed Vector Estimation with Linear Observation Model
    Shirazi, Mojtaha
    Vosoughi, Azadeh
    2014 IEEE 25TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATION (PIMRC), 2014, : 712 - 716
  • [22] Cramer-Rao Lower Bound for Bayesian Estimation of Quantized MMV Sparse Signals
    Thoota, Sai Subramanyam
    Murthy, Chandra R.
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 171 - 175
  • [23] On the Bayesian Cramer-Rao Bound for Markovian Switching Systems
    Svensson, Lennart
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (09) : 4507 - 4516
  • [24] Bayesian Cramer-Rao Bound for Multiple Targets Tracking in MIMO Radar Bayesian Cramer-Rao Bound for Multiple Targets Tracking in MIMO Radar
    Phuoc Vu
    Haimovich, Alexander M.
    Himed, Braham
    2017 IEEE RADAR CONFERENCE (RADARCONF), 2017, : 938 - 942
  • [25] Distributed Posterior Cramer-Rao Lower Bound for Nonlinear Sequential Bayesian Estimation
    Mohammadi, Arash
    Asif, Amir
    2012 IEEE 7TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2012, : 509 - 512
  • [26] On the Cramer-Rao bound for polynomial phase signals
    McKilliam, Robby
    Pollok, Andre
    SIGNAL PROCESSING, 2014, 95 : 27 - 31
  • [27] On the Cramer-Rao bound for carrier frequency estimation in the presence of phase noise
    Barbieri, A
    Bolletta, D
    Colavolpe, G
    GLOBECOM '05: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6: DISCOVERY PAST AND FUTURE, 2005, : 1441 - 1445
  • [28] Analytical Analysis of Bayesian Cramer-Rao Bound for Dynamical Rayleigh Channel Complex Gains Estimation in OFDM System
    Hijazi, Hussein
    Ros, Laurent
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (05) : 1889 - 1900
  • [29] Phase estimation at the quantum Cramer-Rao bound via parity detection
    Seshadreesan, Kaushik P.
    Kim, Sejong
    Dowling, Jonathan P.
    Lee, Hwang
    PHYSICAL REVIEW A, 2013, 87 (04)
  • [30] On the Cramer-Rao bound for carrier frequency estimation in the presence of phase noise
    Barbieri, Alan
    Colavolpe, Giulio
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2007, 6 (02) : 575 - 582