Bayesian Cramer-Rao bound for dynamical phase offset estimation

被引:0
|
作者
Bay, S. [1 ]
Herzet, C. [2 ]
Brossier, J. M. [3 ]
Barbot, J. P. [1 ]
Renaux, A. [4 ]
Geller, B. [1 ]
机构
[1] ENS Cachan, SATIE, 61 Av du President Wilson, F-94230 Cachan, France
[2] Univ Calif Berkeley, Wireless Fdn, Dept EECS, Berkeley, CA 94720 USA
[3] INPG, LIS, F-38402 St Martin Dheres, France
[4] Washington Univ, St Louis, MO 63130 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a closed-form expression of a Bayesian Cramer-Rao lower bound for the estimation of a dynamical phase offset for a random BPSK sequence in an AWGN channel. The received symbols are disturbed by carrier phase offset which follows a Wiener model. Considering a received observation sequence, we provide a first analytical expression of the Bayesian CRB. Then, we derive an asymptote-based lower bound which provides an interesting alternative between accuracy and computational cost.
引用
收藏
页码:285 / +
页数:2
相关论文
共 50 条
  • [31] On the Bayesian Cramer-Rao Bound for Phase Noise Estimation Based on 1-bit Quantized Samples
    Zeitz, Stephan
    Gast, Florian
    Doerpinghaus, Meik
    Fettweis, Gerhard
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 6170 - 6175
  • [32] Cramer-Rao bound for bearing estimation with bias correction
    Xu, Wen
    2007 OCEANS, VOLS 1-5, 2007, : 1894 - 1898
  • [33] The modified Cramer-Rao bound in vector parameter estimation
    Gini, F
    Reggiannini, R
    Mengali, U
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1998, 46 (01) : 52 - 60
  • [34] Phase Noise and Carrier Frequency Offset in OFDM systems: Joint Estimation and Hybrid Cramer-Rao Lower Bound
    Salim, Omar Hazim
    Nasir, Ali A.
    Mehrpouyan, Hani
    Xiang, Wei
    2013 IEEE 14TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2013, : 649 - 653
  • [35] THE CRAMER-RAO BOUND FOR ESTIMATION-AFTER-SELECTION
    Routtenberg, Tirza
    Tong, Lang
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [36] CRAMER-RAO LOWER BOUND FOR LOCALIZATION IN ENVIRONMENTS WITH DYNAMICAL OBSTACLES
    Wang, Ri-Ming
    Feng, Jiu-Chao
    2014 11TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2014, : 51 - 54
  • [37] Cramer-Rao lower bound for harmonic and subharmonic estimation
    Chen, Zhili
    Nowrouzian, Behrouz
    Zarowski, Christopher J.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2532 - 2535
  • [38] GEOMETRY OF THE CRAMER-RAO BOUND
    SCHARF, LL
    MCWHORTER, LT
    SIGNAL PROCESSING, 1993, 31 (03) : 301 - 311
  • [39] A CONSTRAINED HYBRID CRAMER-RAO BOUND FOR PARAMETER ESTIMATION
    Ren, Chengfang
    Le Kernec, Julien
    Galy, Jerome
    Chaumette, Eric
    Larzabal, Pascal
    Renaux, Alexandre
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3472 - 3476
  • [40] Noisy Feedback Linear Precoding: A Bayesian Cramer-Rao Bound
    Housfater, Alon Shalev
    Lim, Teng Joon
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1689 - 1693