Distributed Posterior Cramer-Rao Lower Bound for Nonlinear Sequential Bayesian Estimation

被引:0
|
作者
Mohammadi, Arash [1 ]
Asif, Amir [1 ]
机构
[1] York Univ, Toronto, ON M3J 1P3, Canada
关键词
Bayesian Estimation; Distributed Signal Processing; Particle Filters; Posterior Cramer Rao Lower Bounds;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In distributed sensor networks, the posterior Cramer-Rao lower bound (PCRLB) has recently been used [1] as a selection criteria for sensor management decisions, where new sensor nodes are deployed or existing ones reactivated to optimize the network's performance. Previous algorithms to compute the PCRLB are derived for the centralized [2] and hierarchical architectures [3] using a fusion centre that makes them inappropriate for distributed sensor management. Only recently a suboptimal expression [1] for the distributed architecture has been proposed, which can at times lead to large errors especially in systems with highly non-linear dynamics. The paper derives the optimal PCRLB for the distributed architecture. In other words, we derive a recursive procedure to determine the overall Fisher information matrix (FIM), i.e., the inverse of the PCRLB, from local FIMs of the distributed estimators. The proposed distributed PCRLB is independent of the filtering mechanism used and closely follows its centralized counterpart.
引用
收藏
页码:509 / 512
页数:4
相关论文
共 50 条
  • [1] Conditional Posterior Cramer-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation
    Zuo, Long
    Niu, Ruixin
    Varshney, Pramod K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (01) : 1 - 14
  • [2] Decentralized Conditional Posterior Cramer-Rao Lower Bound for Nonlinear Distributed Estimation
    Mohammadi, Arash
    Asif, Amir
    IEEE SIGNAL PROCESSING LETTERS, 2013, 20 (02) : 165 - 168
  • [3] New Conditional Posterior Cramer-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation
    Zheng, Yujiao
    Ozdemir, Onur
    Niu, Ruixin
    Varshney, Pramod K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) : 5549 - 5556
  • [4] MODIFIED BAYESIAN CRAMER-RAO LOWER BOUND FOR NONLINEAR TRACKING
    Ozdemir, Onur
    Niu, Ruixin
    Varshney, Pramod K.
    Drozd, Andrew L.
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3972 - 3975
  • [5] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 23 - 24
  • [7] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    XV LATIN AMERICAN REGIONAL IAU MEETING, 2016, 2017, 49 : 52 - 52
  • [8] THE BAYESIAN CRAMER-RAO LOWER BOUND IN PHOTOMETRY
    Espinosa, Sebastian
    Silva, Jorge F.
    Mendez, Rene A.
    Orchard, Marcos
    VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 50 - 51
  • [9] Cramer-Rao lower bound for parameter estimation in nonlinear systems
    Lin, ZP
    Zou, QY
    Ward, ES
    Ober, RJ
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (12) : 855 - 858
  • [10] Bayesian Cramer-Rao Bound for Distributed Vector Estimation with Linear Observation Model
    Shirazi, Mojtaha
    Vosoughi, Azadeh
    2014 IEEE 25TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATION (PIMRC), 2014, : 712 - 716