A stochastic approximation algorithm with Markov chain Monte-Carlo method for incomplete data estimation problems

被引:64
|
作者
Gu, MG [1 ]
Kong, FH
机构
[1] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[2] WESTAT Corp, Rockville, MD 20850 USA
关键词
incomplete data; maximum likelihood estimation; measurement error models; logistic regression; Metropolis algorithm;
D O I
10.1073/pnas.95.13.7270
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a general procedure for solving incomplete data estimation problems. The procedure can be used to find the maximum likelihood estimate or to solve estimating equations in difficult cases such as estimation with the censored or truncated regression model, the nonlinear structural measurement error model, and the random effects model. The procedure is based on the general principle of stochastic approximation and the Markov chain Monte-Carlo method. Applying the theory on adaptive algorithms, we derive conditions under which the proposed procedure converges. Simulation studies also indicate that the proposed procedure consistently converges to the maximum likelihood estimate for the structural measurement error logistic regression model.
引用
收藏
页码:7270 / 7274
页数:5
相关论文
共 50 条
  • [41] An introduction to the Markov chain Monte Carlo method
    Wang, Wenlong
    [J]. AMERICAN JOURNAL OF PHYSICS, 2022, 90 (12) : 921 - 934
  • [42] SOLUTION OF THE DETERMINISTIC AND STOCHASTIC SPATIAL PROBLEMS OF THE ELASTICITY THEORY BY THE MONTE-CARLO METHOD
    SABELFELD, KK
    SIMONOV, NA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1984, 275 (04): : 802 - 805
  • [43] On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo
    Rabier, Charles-Elie
    Berry, Vincent
    Stoltz, Marnus
    Santos, Joao D.
    Wang, Wensheng
    Glaszmann, Jean-Christophe
    Pardi, Fabio
    Scornavacca, Celine
    Kosakovsky Pond, Sergei L.
    Noble, William Stafford
    Kosakovsky Pond, Sergei L.
    Noble, William Stafford
    Kosakovsky Pond, Sergei L.
    Noble, William Stafford
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (09)
  • [44] Markov chain Monte Carlo estimation of quantum states
    DiGuglielmo, James
    Messenger, Chris
    Fiurasek, Jaromir
    Hage, Boris
    Samblowski, Aiko
    Schmidt, Tabea
    Schnabel, Roman
    [J]. PHYSICAL REVIEW A, 2009, 79 (03):
  • [45] Benchmark estimation for Markov chain Monte Carlo samples
    Guha, S
    MacEachern, SN
    Peruggia, M
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (03) : 683 - 701
  • [46] On quantile estimation and Markov chain Monte Carlo convergence
    Brooks, SP
    Roberts, GO
    [J]. BIOMETRIKA, 1999, 86 (03) : 710 - 717
  • [47] Prosumer Response Estimation Using SINDyc in Conjunction with Markov-Chain Monte-Carlo Sampling
    Banis, Frederik
    Madsen, Henrik
    Poulsen, Niels K.
    Guericke, Daniela
    [J]. ENERGIES, 2020, 13 (12)
  • [48] A Markov Chain Monte Carlo Algorithm for Spatial Segmentation
    Raveendran, Nishanthi
    Sofronov, Georgy
    [J]. INFORMATION, 2021, 12 (02) : 1 - 14
  • [49] Markov chain Monte Carlo with the Integrated Nested Laplace Approximation
    Virgilio Gómez-Rubio
    Håvard Rue
    [J]. Statistics and Computing, 2018, 28 : 1033 - 1051
  • [50] Markov chain Monte Carlo with the Integrated Nested Laplace Approximation
    Gomez-Rubio, Virgilio
    Rue, Havard
    [J]. STATISTICS AND COMPUTING, 2018, 28 (05) : 1033 - 1051