Hardy-type inequalities related to degenerate elliptic differential operators

被引:1
|
作者
D'Ambrosio, L [1 ]
机构
[1] Dipartimento Matemat, I-70125 Bari, Italy
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators L(p)u := -del(L)* (vertical bar del(L)u vertical bar(p-2)del(L)u). If phi is a positive weight such that -L-p phi >= 0, then the Hardy-type inequality c integral(Omega) vertical bar u vertical bar(p)/phi(p) vertical bar del(L)phi vertical bar(p) d xi <= integral(Omega) vertical bar del(L)u vertical bar(p) d xi (i is an element of C-0(1)(Omega))holds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.
引用
收藏
页码:451 / 486
页数:36
相关论文
共 50 条
  • [41] On a new class of Hardy-type inequalities
    EO Adeleke
    A Čižmešija
    JA Oguntuase
    L-E Persson
    D Pokaz
    Journal of Inequalities and Applications, 2012
  • [42] The Optimal Constant in Hardy-type Inequalities
    Mu-Fa CHEN
    Acta Mathematica Sinica, 2015, 31 (05) : 731 - 754
  • [43] New Hardy-type integral inequalities
    Manna, Atanu
    ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (3-4): : 467 - 491
  • [44] ITERATED DISCRETE HARDY-TYPE INEQUALITIES
    Zhangabergenova, N.
    Temirkhanova, A.
    EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (01): : 81 - 95
  • [45] On a scale of Hardy-type integral inequalities
    Yu. A. Dubinskii
    Doklady Mathematics, 2010, 81 : 111 - 114
  • [46] A new approach to Hardy-type inequalities
    Adam Osȩkowski
    Archiv der Mathematik, 2015, 104 : 165 - 176
  • [47] On weighted iterated Hardy-type inequalities
    Rza Mustafayev
    Positivity, 2018, 22 : 275 - 299
  • [48] On weighted iterated Hardy-type inequalities
    Mustafayev, Rza
    POSITIVITY, 2018, 22 (01) : 275 - 299
  • [49] Hardy-type Inequalities for Convex Functions
    Anthonio, Y. O.
    Rauf, K.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (01): : 263 - 271
  • [50] The optimal constant in Hardy-type inequalities
    Mu-Fa Chen
    Acta Mathematica Sinica, English Series, 2015, 31 : 731 - 754