Hardy-type inequalities related to degenerate elliptic differential operators

被引:1
|
作者
D'Ambrosio, L [1 ]
机构
[1] Dipartimento Matemat, I-70125 Bari, Italy
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators L(p)u := -del(L)* (vertical bar del(L)u vertical bar(p-2)del(L)u). If phi is a positive weight such that -L-p phi >= 0, then the Hardy-type inequality c integral(Omega) vertical bar u vertical bar(p)/phi(p) vertical bar del(L)phi vertical bar(p) d xi <= integral(Omega) vertical bar del(L)u vertical bar(p) d xi (i is an element of C-0(1)(Omega))holds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.
引用
收藏
页码:451 / 486
页数:36
相关论文
共 50 条
  • [31] Some Hardy-type inequalities for the generalized Baouendi-Grushin operators
    Niu, PC
    Chen, YX
    Han, YZ
    GLASGOW MATHEMATICAL JOURNAL, 2004, 46 : 515 - 527
  • [32] On the strong unique continuation property of a degenerate elliptic operator with Hardy-type potential
    Agnid Banerjee
    Arka Mallick
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 1 - 21
  • [33] On the strong unique continuation property of a degenerate elliptic operator with Hardy-type potential
    Banerjee, Agnid
    Mallick, Arka
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (01) : 1 - 21
  • [34] EQUIVALENT INTEGRAL CONDITIONS RELATED TO BILINEAR HARDY-TYPE INEQUALITIES
    Kanjilal, Saikat
    Persson, Lars-Erik
    Shambilova, Guldarya E.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1535 - 1548
  • [35] ON HARDY-TYPE INEQUALITIES FOR WEIGHTED MEANS
    Pales, Zsolt
    Pasteczka, Pawel
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (01): : 217 - 233
  • [36] Sharpness of some Hardy-type inequalities
    Lars-Erik Persson
    Natasha Samko
    George Tephnadze
    Journal of Inequalities and Applications, 2023
  • [37] Hardy inequalities related to Grushin type operators
    D'Ambrosio, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (03) : 725 - 734
  • [38] The Optimal Constant in Hardy-type Inequalities
    Mu-Fa CHEN
    Acta Mathematica Sinica,English Series, 2015, (05) : 731 - 754
  • [39] A new approach to Hardy-type inequalities
    Osekowski, Adam
    ARCHIV DER MATHEMATIK, 2015, 104 (02) : 165 - 176
  • [40] On a scale of Hardy-type integral inequalities
    Dubinskii, Yu. A.
    DOKLADY MATHEMATICS, 2010, 81 (01) : 111 - 114