Hardy-type inequalities related to degenerate elliptic differential operators

被引:1
|
作者
D'Ambrosio, L [1 ]
机构
[1] Dipartimento Matemat, I-70125 Bari, Italy
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators L(p)u := -del(L)* (vertical bar del(L)u vertical bar(p-2)del(L)u). If phi is a positive weight such that -L-p phi >= 0, then the Hardy-type inequality c integral(Omega) vertical bar u vertical bar(p)/phi(p) vertical bar del(L)phi vertical bar(p) d xi <= integral(Omega) vertical bar del(L)u vertical bar(p) d xi (i is an element of C-0(1)(Omega))holds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.
引用
收藏
页码:451 / 486
页数:36
相关论文
共 50 条
  • [21] Bilateral Hardy-type Inequalities
    Mu Fa CHEN
    Acta Mathematica Sinica, 2013, 29 (01) : 1 - 32
  • [22] Bilateral Hardy-type inequalities
    Chen, Mu Fa
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (01) : 1 - 32
  • [23] ON WEIGHTED HARDY-TYPE INEQUALITIES
    Chuah, Chian Yeong
    Gesztesy, Fritz
    Littlejohn, Lance L.
    Mei, Tao
    Michael, Isaac
    Pang, Michael M. H.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 625 - 646
  • [24] Discrete Hardy-type Inequalities
    Liao, Zhong-Wei
    ADVANCED NONLINEAR STUDIES, 2015, 15 (04) : 805 - 834
  • [25] Bilateral Hardy-type Inequalities
    Mu Fa CHEN
    数学学报, 2013, 56 (02) : 289 - 289
  • [26] On Hardy-type integral inequalities
    Leng, Tuo
    Feng, Yong
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (10) : 1297 - 1304
  • [27] On Hardy-type integral inequalities
    Tuo Leng
    Yong Feng
    Applied Mathematics and Mechanics, 2013, 34 : 1297 - 1304
  • [28] A note on Hardy-type inequalities
    Gao, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 1977 - 1984
  • [29] Hardy-type operators with general kernels and characterizations of dynamic weighted inequalities
    Saker, S. H.
    Osman, M. M.
    O'Regan, D.
    Agarwal, R. P.
    ANNALES POLONICI MATHEMATICI, 2021, 126 (01) : 55 - 78
  • [30] HARDY-TYPE WEIGHTED INEQUALITY FOR ELLIPTIC-OPERATORS AND ITS APPLICATIONS
    MESHKOV, VZ
    DOKLADY AKADEMII NAUK SSSR, 1987, 295 (06): : 1310 - 1313