Hardy-type inequalities related to degenerate elliptic differential operators

被引:1
|
作者
D'Ambrosio, L [1 ]
机构
[1] Dipartimento Matemat, I-70125 Bari, Italy
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators L(p)u := -del(L)* (vertical bar del(L)u vertical bar(p-2)del(L)u). If phi is a positive weight such that -L-p phi >= 0, then the Hardy-type inequality c integral(Omega) vertical bar u vertical bar(p)/phi(p) vertical bar del(L)phi vertical bar(p) d xi <= integral(Omega) vertical bar del(L)u vertical bar(p) d xi (i is an element of C-0(1)(Omega))holds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.
引用
收藏
页码:451 / 486
页数:36
相关论文
共 50 条
  • [1] Optimal Hardy-type inequalities for elliptic operators
    Devyver, Baptiste
    Fraas, Martin
    Pinchover, Yehuda
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (9-10) : 475 - 479
  • [2] GENERAL WEIGHTED HARDY-TYPE INEQUALITIES RELATED TO GREINER OPERATORS
    Yener, Abdullah
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (07) : 2405 - 2430
  • [3] REVERSE HARDY-TYPE INEQUALITIES FOR SUPREMAL OPERATORS WITH MEASURES
    Mustafayev, Rza
    Unver, Tugce
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1295 - 1311
  • [4] Hardy-type inequalities for a new class of integral operators
    Sinnamon, G
    ANALYSIS OF DIVERGENCE: CONTROL AND MANAGEMENT OF DIVERGENT PROCESSES, 1999, : 297 - 307
  • [5] Several Hardy-type inequalities with weights related to Baouendi-Grushin operators
    Yener, Abdullah
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) : 3050 - 3060
  • [6] ON SOME HARDY-TYPE INEQUALITIES FOR FRACTIONAL CALCULUS OPERATORS
    Iqbal, Sajid
    Pecaric, Josip
    Samraiz, Muhammad
    Tomovski, Zivorad
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (02): : 438 - 457
  • [7] Weighted inequalities for Hardy-type operators involving suprema
    Gogatishvili, Amiran
    Opic, Bohumira
    Pick, Lubos
    COLLECTANEA MATHEMATICA, 2006, 57 (03) : 227 - 255
  • [8] Hardy-type inequalities
    Radha, R
    TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (03): : 447 - 456
  • [9] Hardy-type inequalities for Dunkl operators with applications to many-particle Hardy inequalities
    Velicu, Andrei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (06)
  • [10] On Hardy-type inequalities
    Edmunds, DE
    Hurri, R
    MATHEMATISCHE NACHRICHTEN, 1998, 194 : 23 - 33