Quantum toroidal gl1 and Bethe ansatz

被引:50
|
作者
Feigin, B. [1 ,2 ,3 ]
Jimbo, M. [4 ]
Miwa, T. [5 ]
Mukhin, E. [6 ]
机构
[1] Natl Res Univ Higher Sch Econ, Moscow, Russia
[2] Int Lab Representat Theory & Math Phys, Moscow 101000, Russia
[3] Landau Inst Theoret Phys, Chernogolovka 142432, Russia
[4] Rikkyo Univ, Dept Math, Toshima Ku, Tokyo 1718501, Japan
[5] Kyoto Univ, Inst Liberal Arts & Sci, Kyoto 6068316, Japan
[6] Indiana Univ Purdue Univ, Dept Math, Indianapolis, IN 46202 USA
关键词
quantum toroidal algebra; Bethe ansatz; shuffle algebra; ELLIPTIC HALL ALGEBRA; K-THEORY;
D O I
10.1088/1751-8113/48/24/244001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish the method of Bethe ansatz for the XXZ type model obtained from the R matrix associated to quantum toroidal gl(1). We do this by using shuffle realizations of the modules and by showing that the Hamiltonian of the model is obtained from a simple multiplication operator by taking an appropriate quotient. We expect this approach to be applicable to a wide variety of models.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Bethe ansatz for quantum-deformed strings
    Fiona K. Seibold
    Alessandro Sfondrini
    Journal of High Energy Physics, 2021
  • [22] Preparing Bethe Ansatz Eigenstates on a Quantum Computer
    Van Dyke, John S.
    Barron, George S.
    Mayhall, Nicholas J.
    Barnes, Edwin
    Economou, Sophia E.
    PRX QUANTUM, 2021, 2 (04):
  • [23] How accurate is the quantum string Bethe ansatz?
    Schafer-Nameki, Sakura
    Zamaklar, Marija
    Zarembo, Konstantin
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (12):
  • [24] The algebraic Bethe ansatz and quantum integrable systems
    Slavnov, N. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (04) : 727 - 766
  • [25] On Solutions of the Bethe Ansatz for the Quantum KdV Model
    Riccardo Conti
    Davide Masoero
    Communications in Mathematical Physics, 2023, 402 : 335 - 390
  • [26] Bethe Ansatz, quantum computers, and unitary geometry
    Lulek, Tadeusz
    SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2008, 104
  • [27] Maximal subgroups of GL1(D)
    Akbari, S
    Mahdavi-Hezavehi, M
    Mahmudi, MG
    JOURNAL OF ALGEBRA, 1999, 217 (02) : 422 - 433
  • [28] Algebraic Bethe ansatz for gl(2,1) invariant 36-vertex models
    Pfannmuller, MP
    Frahm, H
    NUCLEAR PHYSICS B, 1996, 479 (03) : 575 - 593
  • [29] Bethe ansatz for quantum-deformed strings
    Seibold, Fiona K.
    Sfondrini, Alessandro
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (12)
  • [30] A universality test of the quantum string Bethe ansatz
    Freyhult, L.
    Kristjansen, C.
    PHYSICS LETTERS B, 2006, 638 (2-3) : 258 - 264