Maximal subgroups of GL1(D)

被引:29
|
作者
Akbari, S [1 ]
Mahdavi-Hezavehi, M [1 ]
Mahmudi, MG [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
关键词
division ring; maximal subgroup; absolutely irreducible;
D O I
10.1006/jabr.1998.7792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a division algebra of degree m over its center F. Herstein has shown that any finite normal subgroup of D* := GL(1)(D) is central. Here, as a generalization of this result, it is shown that any finitely generated normal subgroup of DX; is central. This also solves a problem raised by Akbari and Mahdavi-Hezavehi (Proc. Amer. Math. Sec., to appear) for finite-dimensional division algebras. The structure of maximal multiplicative subgroups of an arbitrary division ring D is then investigated. Given a maximal subgroup M of D* whose center is algebraic over F, it is proved that if M satisfies a multilinear polynomial identity over F, then [D : F] < infinity. (C) 1999 Academic Press.
引用
收藏
页码:422 / 433
页数:12
相关论文
共 50 条
  • [1] Free subgroups in maximal subgroups of GL1(D)
    Mahdavi-Hezavehi, M
    JOURNAL OF ALGEBRA, 2001, 241 (02) : 720 - 730
  • [2] On the non-triviality of G(D) and the existence of maximal subgroups of GL1 (D)
    Keshavarzipour, T
    Mahdavi-Hezavehi, M
    JOURNAL OF ALGEBRA, 2005, 285 (01) : 213 - 221
  • [3] ON LOCALLY NILPOTENT SUBGROUPS OF GL1(D)
    Bui Xuan Hai
    Nguyen Van Thin
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (02) : 712 - 718
  • [4] Irreducible subgroups of GL1(D) satisfying group identities
    Ebrahimian, R
    Kiani, D
    Mahdavi-Hezavehi
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) : 3367 - 3373
  • [5] Subgroups of GL1(R) for local rings R
    Kuku, AO
    Mahdavi-Hezavehi, M
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (05) : 1895 - 1902
  • [6] The affine Yangian of gl1 revisited
    Tsymbaliuk, Alexander
    ADVANCES IN MATHEMATICS, 2017, 304 : 583 - 645
  • [7] A CHARACTERIZATION OF AUTOMORPHIC REPRESENTATIONS OF GL1 AND GL2
    LI, WCW
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (15): : 681 - 684
  • [8] Quantum toroidal gl1 and Bethe ansatz
    Feigin, B.
    Jimbo, M.
    Miwa, T.
    Mukhin, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (24)
  • [9] Burgess-like subconvexity for GL1
    Wu, Han
    COMPOSITIO MATHEMATICA, 2019, 155 (08) : 1457 - 1499
  • [10] Quantum gl1/1 and tangle Floer homology
    Ellis, Alexander P.
    Petkova, Ina
    Vertesi, Vera
    ADVANCES IN MATHEMATICS, 2019, 350 : 130 - 189