We study the Bethe Ansatz Equations for the Quantum KdV model, which are also known to be solved by the spectral determinants of a specific family of anharmonic oscillators called monster potentials (ODE/IM correspondence). These Bethe Ansatz Equations depend on two parameters identified with the momentum and the degree at infinity of the anharmonic oscillators. We provide a complete classification of the solutions with only real and positive roots—when the degree is greater than 2—in terms of admissible sequences of holes. In particular, we prove that admissible sequences of holes are naturally parameterised by integer partitions, and we prove that they are in one-to-one correspondence with solutions of the Bethe Ansatz Equations, if the momentum is large enough. Consequently, we deduce that the monster potentials are complete, in the sense that every solution of the Bethe Ansatz Equations coincides with the spectrum of a unique monster potential. This essentially (i.e. up to gaps in the previous literature) proves the ODE/IM correspondence for the Quantum KdV model/monster potentials—which was conjectured by Dorey–Tateo and Bazhanov–Lukyanov–Zamolodchikov—when the degree is greater than 2. Our approach is based on the transformation of the Bethe Ansatz Equations into a free-boundary nonlinear integral equation—akin to the equations known in the physics literature as DDV or KBP or NLIE—of which we develop the mathematical theory from the beginning.
机构:
Univ Autonoma Madrid, UAM CSIC, Inst Fis Teor, Madrid, SpainUniv Autonoma Madrid, UAM CSIC, Inst Fis Teor, Madrid, Spain
Ruiz, Roberto
Sopena, Alejandro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Madrid, UAM CSIC, Inst Fis Teor, Madrid, SpainUniv Autonoma Madrid, UAM CSIC, Inst Fis Teor, Madrid, Spain
Sopena, Alejandro
Gordon, Max Hunter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Madrid, UAM CSIC, Inst Fis Teor, Madrid, Spain
Normal Comp Corp, New York, NY USAUniv Autonoma Madrid, UAM CSIC, Inst Fis Teor, Madrid, Spain
Gordon, Max Hunter
Sierra, German
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Madrid, UAM CSIC, Inst Fis Teor, Madrid, SpainUniv Autonoma Madrid, UAM CSIC, Inst Fis Teor, Madrid, Spain
Sierra, German
Lopez, Esperanza
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Madrid, UAM CSIC, Inst Fis Teor, Madrid, SpainUniv Autonoma Madrid, UAM CSIC, Inst Fis Teor, Madrid, Spain