On Solutions of the Bethe Ansatz for the Quantum KdV Model

被引:0
|
作者
Riccardo Conti
Davide Masoero
机构
[1] Grupo de Física Matemática da Universidade de Lisboa,
[2] Edifício C6,undefined
[3] Campo Grande,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the Bethe Ansatz Equations for the Quantum KdV model, which are also known to be solved by the spectral determinants of a specific family of anharmonic oscillators called monster potentials (ODE/IM correspondence). These Bethe Ansatz Equations depend on two parameters identified with the momentum and the degree at infinity of the anharmonic oscillators. We provide a complete classification of the solutions with only real and positive roots—when the degree is greater than 2—in terms of admissible sequences of holes. In particular, we prove that admissible sequences of holes are naturally parameterised by integer partitions, and we prove that they are in one-to-one correspondence with solutions of the Bethe Ansatz Equations, if the momentum is large enough. Consequently, we deduce that the monster potentials are complete, in the sense that every solution of the Bethe Ansatz Equations coincides with the spectrum of a unique monster potential. This essentially (i.e. up to gaps in the previous literature) proves the ODE/IM correspondence for the Quantum KdV model/monster potentials—which was conjectured by Dorey–Tateo and Bazhanov–Lukyanov–Zamolodchikov—when the degree is greater than 2. Our approach is based on the transformation of the Bethe Ansatz Equations into a free-boundary nonlinear integral equation—akin to the equations known in the physics literature as DDV or KBP or NLIE—of which we develop the mathematical theory from the beginning.
引用
收藏
页码:335 / 390
页数:55
相关论文
共 50 条
  • [31] Bethe ansatz for quantum-deformed strings
    Seibold, Fiona K.
    Sfondrini, Alessandro
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (12)
  • [32] A universality test of the quantum string Bethe ansatz
    Freyhult, L.
    Kristjansen, C.
    PHYSICS LETTERS B, 2006, 638 (2-3) : 258 - 264
  • [33] Bethe ansatz technique in shell model
    Balantekin, A. B.
    Pehlivan, Y.
    PERSPECTIVES IN NUCLEAR PHYSICS, 2009, 1120 : 87 - +
  • [34] Bethe ansatz for the deformed Gaudin model
    Kulish, Petr
    Manojlovic, Nenad
    Samsonov, Maxim
    Stolin, Alexander
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2010, 59 (04) : 326 - 331
  • [35] Bethe ansatz solutions of the 1D extended Hubbard-model
    侯海洋
    孙佩
    乔艺
    许小甜
    张鑫
    杨涛
    Communications in Theoretical Physics, 2024, 76 (04) : 45 - 52
  • [36] EXACT BETHE ANSATZ FOR A QUANTUM NONLINEAR SCHRODINGER MODEL WITH THE MOST GENERAL SUPERMATRICES
    ZHOU, YK
    NUCLEAR PHYSICS B, 1989, 326 (03) : 775 - 786
  • [37] Bethe Ansatz solutions and excitation gap of the attractive Bose-Hubbard model
    Lee, DS
    Kim, D
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2001, 39 (02) : 203 - 208
  • [38] Bethe ansatz solutions of the 1D extended Hubbard-model
    Hou, Haiyang
    Sun, Pei
    Qiao, Yi
    Xu, Xiaotian
    Zhang, Xin
    Yang, Tao
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (04)
  • [39] Bethe Ansatz solution of the closed anisotropic supersymmetric U model with quantum supersymmetry
    Hibberd, K
    Roditi, I
    Links, J
    Foerster, A
    MODERN PHYSICS LETTERS A, 2000, 15 (02) : 133 - 143
  • [40] Exact Bethe ansatz solution of non-ultralocal quantum mKdV model
    Kundu, A
    MODERN PHYSICS LETTERS A, 1995, 10 (38) : 2955 - 2966