Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer

被引:618
|
作者
Tomlins, Scott A.
Laxman, Bharathi
Dhanasekaran, Saravana M.
Helgeson, Beth E.
Cao, Xuhong
Morris, David S.
Menon, Anjana
Jing, Xiaojun
Cao, Qi
Han, Bo
Yu, Jindan
Wang, Lei
Montie, James E.
Rubin, Mark A.
Pienta, Kenneth J.
Roulston, Diane
Shah, Rajal B.
Varambally, Sooryanarayana
Mehra, Rohit
Chinnaiyan, Arul M. [1 ]
机构
[1] Univ Michigan, Sch Med, Michigan Ctr Translat Pathol, Dept Pathol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Med, Dept Urol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Sch Med, Dept Internal Med, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Sch Med, Ctr Comprehens Canc, Ann Arbor, MI 48109 USA
[5] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
关键词
D O I
10.1038/nature06024
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, we identified recurrent gene fusions involving the 59 untranslated region of the androgen-regulated gene TMPRSS2 and the ETS (E26 transformation-specific) family genes ERG, ETV1 or ETV4 in most prostate cancers(1,2). Whereas TMPRSS2 ERG fusions are predominant, fewer TMPRSS2-ETV1 cases have been identified than expected on the basis of the frequency of high (outlier) expression of ETV1 (refs 3-13). Here we explore the mechanism of ETV1 outlier expression in human prostate tumours and prostate cancer cell lines. We identified previously unknown 59 fusion partners in prostate tumours with ETV1 outlier expression, including untranslated regions from a prostate-specific androgen-induced gene (SLC45A3) and an endogenous retroviral element (HERV-K_22q11.23), a prostate-specific androgen-repressed gene (C15orf21), and a strongly expressed housekeeping gene (HNRPA2B1). To study aberrant activation of ETV1, we identified two prostate cancer cell lines, LNCaP and MDA-PCa 2B, that had ETV1 outlier expression. Through distinct mechanisms, the entire ETV1 locus (7p21) is rearranged to a 1.5-megabase prostate-specific region at 14q13.3-14q21.1 in both LNCaP cells (cryptic insertion) and MDA- PCa 2B cells (balanced translocation). Because the common factor of these rearrangements is aberrant ETV1 overexpression, we recapitulated this event in vitro and in vivo, demonstrating that ETV1 overexpression in benign prostate cells and in the mouse prostate confers neoplastic phenotypes. Identification of distinct classes of ETS gene rearrangements demonstrates that dormant oncogenes can be activated in prostate cancer by juxtaposition to tissue-specific or ubiquitously active genomic loci. Subversion of active genomic regulatory elements may serve as a more generalized mechanism for carcinoma development. Furthermore, the identification of androgen-repressed and insensitive 59 fusion partners may have implications for the anti-androgen treatment of advanced prostate cancer.
引用
收藏
页码:595 / U9
页数:7
相关论文
共 50 条
  • [31] ETS family-associated gene fusions in Japanese prostate cancer: analysis of 194 radical prostatectomy samples
    Miyagi, Yohei
    Sasaki, Takeshi
    Fujinami, Kiyoshi
    Sano, Jinyu
    Senga, Yutaka
    Miura, Takeshi
    Kameda, Yoichi
    Sakuma, Yuji
    Nakamura, Yoshiyasu
    Harada, Masaoki
    Tsuchiya, Eiju
    MODERN PATHOLOGY, 2010, 23 (11) : 1492 - 1498
  • [32] Oncogenic FGFR3 gene fusions in bladder cancer
    Williams, Sarah V.
    Hurst, Carolyn D.
    Knowles, Margaret A.
    HUMAN MOLECULAR GENETICS, 2013, 22 (04) : 795 - 803
  • [33] A Systematic Analysis of Oncogenic Gene Fusions in Primary Colon Cancer
    Kloosterman, Wigard P.
    van den Braak, Robert R. J. Coebergh
    Pieterse, Mark
    van Roosmalen, Markus J.
    Sieuwerts, Anieta M.
    Stangl, Christina
    Brunekreef, Ronne
    Lalmahomed, Zarina S.
    Ooft, Salo
    van Galen, Anne
    Smid, Marcel
    Lefebvre, Armel
    Zwartkruis, Fried
    Martens, John W. M.
    Foekens, John A.
    Biermann, Katharina
    Koudijs, Marco J.
    Ijzermans, Jan N. M.
    Voest, Emile E.
    CANCER RESEARCH, 2017, 77 (14) : 3814 - 3822
  • [34] The landscape of oncogenic gene fusions in Chinese colorectal cancer patients
    Lu, Zhenhai
    Song, Rongfeng
    Li, Kunsong
    Cheng, Ying
    Wang, Wenjing
    Wang, Weifeng
    CANCER RESEARCH, 2020, 80 (16)
  • [35] Common Gene Rearrangements in Prostate Cancer
    Rubin, Mark A.
    Maher, Christopher A.
    Chinnaiyan, Arul M.
    JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (27) : 3659 - 3668
  • [36] Prostate-derived Ets factor, an oncogenic driver in breast cancer
    Sood, Ashwani K.
    Geradts, Joseph
    Young, Jessica
    TUMOR BIOLOGY, 2017, 39 (05)
  • [37] The discovery and application of gene fusions in prostate cancer
    Morris, David S.
    Tomlins, Scott A.
    Montie, James E.
    Chinnaiyan, Arul M.
    BJU INTERNATIONAL, 2008, 102 (03) : 276 - 282
  • [38] PARP inhibition reverses radiation resistance conferred by ETS fusions in prostate cancer
    Feng, F. Y.
    Han, S.
    Brenner, C.
    Sabolch, A.
    Hamstra, D. A.
    Lawrence, T. S.
    Chinnaiyan, A.
    JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (15)
  • [39] ETS GENE TRANSLOCATIONS AND PROSTATE CANCER PROGNOSIS
    Clark, J.
    Attard, G.
    Ambroisine, L.
    Mills, I. G.
    Fisher, G.
    Flohr, P.
    Reid, A.
    Edwards, S.
    Kovacs, G.
    Berney, D.
    Foster, C.
    Massie, C. E.
    Fletcher, A.
    De Bono, J. S.
    Scardino, P.
    Cuzick, J.
    Cooper, C. S.
    ANTICANCER RESEARCH, 2008, 28 (6B) : 4155 - 4156
  • [40] Fusion in the ETS gene family and prostate cancer
    S A Narod
    A Seth
    R Nam
    British Journal of Cancer, 2008, 99 : 847 - 851