Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer

被引:618
|
作者
Tomlins, Scott A.
Laxman, Bharathi
Dhanasekaran, Saravana M.
Helgeson, Beth E.
Cao, Xuhong
Morris, David S.
Menon, Anjana
Jing, Xiaojun
Cao, Qi
Han, Bo
Yu, Jindan
Wang, Lei
Montie, James E.
Rubin, Mark A.
Pienta, Kenneth J.
Roulston, Diane
Shah, Rajal B.
Varambally, Sooryanarayana
Mehra, Rohit
Chinnaiyan, Arul M. [1 ]
机构
[1] Univ Michigan, Sch Med, Michigan Ctr Translat Pathol, Dept Pathol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Med, Dept Urol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Sch Med, Dept Internal Med, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Sch Med, Ctr Comprehens Canc, Ann Arbor, MI 48109 USA
[5] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
关键词
D O I
10.1038/nature06024
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, we identified recurrent gene fusions involving the 59 untranslated region of the androgen-regulated gene TMPRSS2 and the ETS (E26 transformation-specific) family genes ERG, ETV1 or ETV4 in most prostate cancers(1,2). Whereas TMPRSS2 ERG fusions are predominant, fewer TMPRSS2-ETV1 cases have been identified than expected on the basis of the frequency of high (outlier) expression of ETV1 (refs 3-13). Here we explore the mechanism of ETV1 outlier expression in human prostate tumours and prostate cancer cell lines. We identified previously unknown 59 fusion partners in prostate tumours with ETV1 outlier expression, including untranslated regions from a prostate-specific androgen-induced gene (SLC45A3) and an endogenous retroviral element (HERV-K_22q11.23), a prostate-specific androgen-repressed gene (C15orf21), and a strongly expressed housekeeping gene (HNRPA2B1). To study aberrant activation of ETV1, we identified two prostate cancer cell lines, LNCaP and MDA-PCa 2B, that had ETV1 outlier expression. Through distinct mechanisms, the entire ETV1 locus (7p21) is rearranged to a 1.5-megabase prostate-specific region at 14q13.3-14q21.1 in both LNCaP cells (cryptic insertion) and MDA- PCa 2B cells (balanced translocation). Because the common factor of these rearrangements is aberrant ETV1 overexpression, we recapitulated this event in vitro and in vivo, demonstrating that ETV1 overexpression in benign prostate cells and in the mouse prostate confers neoplastic phenotypes. Identification of distinct classes of ETS gene rearrangements demonstrates that dormant oncogenes can be activated in prostate cancer by juxtaposition to tissue-specific or ubiquitously active genomic loci. Subversion of active genomic regulatory elements may serve as a more generalized mechanism for carcinoma development. Furthermore, the identification of androgen-repressed and insensitive 59 fusion partners may have implications for the anti-androgen treatment of advanced prostate cancer.
引用
收藏
页码:595 / U9
页数:7
相关论文
共 50 条
  • [11] Oncogenic ETS Factors in Prostate Cancer
    Nicholas, Taylor R.
    Strittmatter, Brady G.
    Hollenhorst, Peter C.
    PROSTATE CANCER: CELLULAR AND GENETIC MECHANISMS OF DISEASE DEVELOPMENT AND PROGRESSION, 2ND EDITION, 2019, 1210 : 409 - 436
  • [12] ETS rearrangements and prostate cancer initiation
    Brett S. Carver
    Jennifer Tran
    Zhenbang Chen
    Arkaitz Carracedo-Perez
    Andrea Alimonti
    Caterina Nardella
    Anuradha Gopalan
    Peter T. Scardino
    Carlos Cordon-Cardo
    William Gerald
    Pier Paolo Pandolfi
    Nature, 2009, 457 : E1 - E1
  • [13] ETS rearrangements and prostate cancer initiation
    Carver, Brett S.
    Tran, Jennifer
    Chen, Zhenbang
    Carracedo-Perez, Arkaitz
    Alimonti, Andrea
    Nardella, Caterina
    Gopalan, Anuradha
    Scardino, Peter T.
    Cordon-Cardo, Carlos
    Gerald, William
    Pandolfi, Pier Paolo
    NATURE, 2009, 457 (7231) : E1 - E1
  • [14] TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming
    Iljin, Kristiina
    Wolf, Maija
    Edgren, Henrik
    Gupta, Santosh
    Kilpinen, Sami
    Skotheim, Rolf I.
    Peltola, Mari
    Smit, Frank
    Verhaegh, Gerald
    Schalken, Jack
    Nees, Matthias
    Kallioniemi, Olli
    CANCER RESEARCH, 2006, 66 (21) : 10242 - 10246
  • [15] ETS Gene Fusions in Prostate Cancer: From Discovery to Daily Clinical Practice
    Tomlins, Scott A.
    Bjartell, Anders
    Chinnaiyan, Arul M.
    Jenster, Guido
    Nam, Robert K.
    Rubin, Mark A.
    Schalken, Jack A.
    EUROPEAN UROLOGY, 2009, 56 (02) : 275 - 286
  • [16] ETS rearrangements and prostate cancer initiation Reply
    Tomlins, Scott A.
    Laxman, Bharathi
    Dhanasekaran, Saravana M.
    Helgeson, Beth E.
    Cao, Xuhong
    Morris, David S.
    Menon, Anjana
    Jing, Xiaojun
    Cao, Qi
    Han, Bo
    Yu, Jindan
    Wang, Lei
    Montie, James E.
    Rubin, Mark A.
    Pienta, Kenneth J.
    Roulston, Diane
    Shah, Rajal B.
    Varambally, Sooryanarayana
    Mehra, Rohit
    Chinnaiyan, Arul M.
    NATURE, 2009, 457 (7231) : E2 - E3
  • [17] Therapeutic strategy for targeting recurrent oncogenic kinase gene fusions in prostate cancer
    Turaga, Ravi Chakra
    Murali, Shivani Jagannathan
    Karre, Bharath Kumar
    Ivan, Cristina
    Sima, Chao
    Abera, Asfetaw
    Radovich, Milan
    O'Neill, Heather
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [18] CHROMOTHRIPSIS LEADS TO CHROMOSOMAL REARRANGEMENTS AND GENE FUSIONS IN PRIMARY GLIOBLASTOMAS
    Rousseau, Audrey
    Coutolleau, Anne
    Menei, Philippe
    Guardiola, Philippe
    Boisselier, Blandine
    NEURO-ONCOLOGY, 2017, 19 : 102 - 102
  • [19] Prostate cancer: Gene fusions
    Groves-Kirkby N.
    Nature Reviews Urology, 2010, 7 (9) : 473 - 473
  • [20] GENE FUSIONS IN PROSTATE CANCER
    Rittenhouse, H.
    ANTICANCER RESEARCH, 2008, 28 (6B) : 4055 - 4055