Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer

被引:618
|
作者
Tomlins, Scott A.
Laxman, Bharathi
Dhanasekaran, Saravana M.
Helgeson, Beth E.
Cao, Xuhong
Morris, David S.
Menon, Anjana
Jing, Xiaojun
Cao, Qi
Han, Bo
Yu, Jindan
Wang, Lei
Montie, James E.
Rubin, Mark A.
Pienta, Kenneth J.
Roulston, Diane
Shah, Rajal B.
Varambally, Sooryanarayana
Mehra, Rohit
Chinnaiyan, Arul M. [1 ]
机构
[1] Univ Michigan, Sch Med, Michigan Ctr Translat Pathol, Dept Pathol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Med, Dept Urol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Sch Med, Dept Internal Med, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Sch Med, Ctr Comprehens Canc, Ann Arbor, MI 48109 USA
[5] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
关键词
D O I
10.1038/nature06024
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, we identified recurrent gene fusions involving the 59 untranslated region of the androgen-regulated gene TMPRSS2 and the ETS (E26 transformation-specific) family genes ERG, ETV1 or ETV4 in most prostate cancers(1,2). Whereas TMPRSS2 ERG fusions are predominant, fewer TMPRSS2-ETV1 cases have been identified than expected on the basis of the frequency of high (outlier) expression of ETV1 (refs 3-13). Here we explore the mechanism of ETV1 outlier expression in human prostate tumours and prostate cancer cell lines. We identified previously unknown 59 fusion partners in prostate tumours with ETV1 outlier expression, including untranslated regions from a prostate-specific androgen-induced gene (SLC45A3) and an endogenous retroviral element (HERV-K_22q11.23), a prostate-specific androgen-repressed gene (C15orf21), and a strongly expressed housekeeping gene (HNRPA2B1). To study aberrant activation of ETV1, we identified two prostate cancer cell lines, LNCaP and MDA-PCa 2B, that had ETV1 outlier expression. Through distinct mechanisms, the entire ETV1 locus (7p21) is rearranged to a 1.5-megabase prostate-specific region at 14q13.3-14q21.1 in both LNCaP cells (cryptic insertion) and MDA- PCa 2B cells (balanced translocation). Because the common factor of these rearrangements is aberrant ETV1 overexpression, we recapitulated this event in vitro and in vivo, demonstrating that ETV1 overexpression in benign prostate cells and in the mouse prostate confers neoplastic phenotypes. Identification of distinct classes of ETS gene rearrangements demonstrates that dormant oncogenes can be activated in prostate cancer by juxtaposition to tissue-specific or ubiquitously active genomic loci. Subversion of active genomic regulatory elements may serve as a more generalized mechanism for carcinoma development. Furthermore, the identification of androgen-repressed and insensitive 59 fusion partners may have implications for the anti-androgen treatment of advanced prostate cancer.
引用
收藏
页码:595 / U9
页数:7
相关论文
共 50 条
  • [21] Chromosomal Rearrangements Leading to MLL Gene Fusions: Clinical and Biological Aspects
    Harper, David P.
    Aplan, Peter D.
    CANCER RESEARCH, 2008, 68 (24) : 10024 - 10027
  • [22] Molecular Pathways: Targeting ETS Gene Fusions in Cancer
    Feng, Felix Y.
    Brenner, J. Chad
    Hussain, Maha
    Chinnaiyan, Arul M.
    CLINICAL CANCER RESEARCH, 2014, 20 (17) : 4442 - 4448
  • [23] FLI1 is a novel ETS transcription factor involved in gene fusions in prostate cancer
    Paulo, Paula
    Barros-Silva, Joao D.
    Ribeiro, Franclim R.
    Ramalho-Carvalho, Joao
    Jeronimo, Carmen
    Henrique, Rui
    Lind, Guro E.
    Skotheim, Rolf I.
    Lothe, Ragnhild A.
    Teixeira, Manuel R.
    GENES CHROMOSOMES & CANCER, 2012, 51 (03): : 240 - 249
  • [24] Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer
    Bilke, Sven
    Schwentner, Raphaela
    Yang, Fan
    Kauer, Maximilian
    Jug, Gunhild
    Walker, Robert L.
    Davis, Sean
    Zhu, Yuelin J.
    Pineda, Marbin
    Meltzer, Paul S.
    Kovar, Heinrich
    GENOME RESEARCH, 2013, 23 (11) : 1797 - 1809
  • [25] Oncogenic gene fusions in nonneoplastic precursors as evidence that bacterial infection can initiate prostate cancer
    Shrestha, Eva
    Coulter, Jonathan B.
    Guzman, William
    Ozbek, Busra
    Hess, Megan M.
    Mummert, Luke
    Ernst, Sarah E.
    Maynard, Janielle P.
    Meeker, Alan K.
    Heaphy, Christopher M.
    Haffner, Michael C.
    De Marzo, Angelo M.
    Sfanos, Karen S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (32)
  • [26] Molecular profiling of ETS gene rearrangements in patients with prostate cancer registered in REDEEM clinical trial
    Palanisamy, Nallasivam
    Tsodikov, Alexi
    Yan, Wei
    Suleman, Khalid
    Rittmaster, Roger
    Lucia, Scott M.
    Chinnaiyan, Arul M.
    Fleshner, Neil
    Kunju, Lakshmi P.
    UROLOGIC ONCOLOGY-SEMINARS AND ORIGINAL INVESTIGATIONS, 2015, 33 (03) : 108.e5 - 108.e13
  • [27] Recurrent gene fusions in prostate cancer
    Chandan Kumar-Sinha
    Scott A. Tomlins
    Arul M. Chinnaiyan
    Nature Reviews Cancer, 2008, 8 : 497 - 511
  • [28] Recurrent gene fusions in prostate cancer
    Kumar-Sinha, Chandan
    Tomlins, Scott A.
    Chinnaiyan, Arul M.
    NATURE REVIEWS CANCER, 2008, 8 (07) : 497 - 511
  • [29] Oncogenic gene fusions in cancer: from biology to therapy
    Stephen V. Liu
    Misako Nagasaka
    Judith Atz
    Flavio Solca
    Leonhard Müllauer
    Signal Transduction and Targeted Therapy, 10 (1)
  • [30] Genomic rearrangement of TMPRSS2 fusions with oncogenic ETS factors: Evidence of epigenetic programming of potential therapeutic significance in prostate cancer
    Gupta, Santosh K.
    Wol, Maija
    Ljlin, Ktsitiina
    Nees, Matthias
    Kallioniemi, Olli
    CELLULAR ONCOLOGY, 2008, 30 (03) : 241 - 241