Pressure induced phase transition of nanocrystalline and bulk maghemite (γ-Fe2O3) to hematite (α-Fe2O3)

被引:25
|
作者
Zhu, Hongyang [1 ,2 ]
Ma, Yanzhang [1 ]
Yang, Haibin [2 ]
Ji, Cheng [1 ]
Hou, Dongbin [1 ]
Guo, Lingyun [1 ]
机构
[1] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
[2] Jilin Univ, Natl Lab Superhard Mat, Changchun 130012, Jilin, Peoples R China
关键词
High Pressure; X-ray diffraction; X-RAY-DIFFRACTION; STRUCTURAL TRANSITIONS; SIZE DEPENDENCE; TRANSFORMATION; NANOPARTICLES; SPECTROSCOPY; STABILITY; MOSSBAUER;
D O I
10.1016/j.jpcs.2010.03.031
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phase transition and bulk moduli of bulk and nanocrystalline gamma-Fe2O3 were studied using synchrotron X-ray diffraction under high pressure. Contrary to most other nanomaterials, nanocrystalline gamma-Fe2O3 begins to transform into alpha-Fe2O3 at the same pressure as bulk gamma-Fe2O3, which is caused by a special structure of gamma-Fe2O3, in which there exist vacancies of crystal. It is believed that phase transition starts from a certain site of vacancy because of the stress concentration at vacancy sites. Compared to bulk material, nanocrystalline gamma-Fe2O3 has a larger bulk modulus, which is ascribed to the large ratio of surface to volume. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1183 / 1186
页数:4
相关论文
共 50 条
  • [21] High-pressure phase transition of Fe2O3
    Ono, Shigeaki
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2004, 60 : S50 - S50
  • [22] Evolution of the Fe3+ Ion Local Environment During the Phase Transition ε-Fe2O3 → α-Fe2O3
    Yakushkin, S. S.
    Balaev, D. A.
    Dubrovskiy, A. A.
    Semenov, S. V.
    Shaikhutdinov, K. A.
    Kazakova, M. A.
    Bukhtiyarova, G. A.
    Martyanov, O. N.
    Bayukov, O. A.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2018, 31 (04) : 1209 - 1217
  • [23] Evolution of the Fe3+ Ion Local Environment During the Phase Transition ε-Fe2O3 → α-Fe2O3
    S. S. Yakushkin
    D. A. Balaev
    A. A. Dubrovskiy
    S. V. Semenov
    K. A. Shaikhutdinov
    M. A. Kazakova
    G. A. Bukhtiyarova
    O. N. Martyanov
    O. A. Bayukov
    Journal of Superconductivity and Novel Magnetism, 2018, 31 : 1209 - 1217
  • [24] A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance
    Can, Musa Mutlu
    Coskun, Mustafa
    Firat, Tezer
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 542 : 241 - 247
  • [25] Local structure and spin transition in Fe2O3 hematite at high pressure
    Sanson, Andrea
    Kantor, Innokenty
    Cerantola, Valerio
    Irifune, Tetsuo
    Carnera, Alberto
    Pascarelli, Sakura
    PHYSICAL REVIEW B, 2016, 94 (01)
  • [26] Crystal Structure of β-Fe2O3 and Topotactic Phase Transformation to α-Fe2O3
    Danno, Teruaki
    Nakatsuka, Daisuke
    Kusano, Yoshihiro
    Asaoka, Hiroshi
    Nakanishi, Makoto
    Fujii, Tatsuo
    Ikeda, Yasunori
    Takada, Jun
    CRYSTAL GROWTH & DESIGN, 2013, 13 (02) : 770 - 774
  • [27] Technetium Incorporation into Hematite (α-Fe2O3)
    Skomurski, Frances N.
    Rosso, Kevin M.
    Krupka, Kenneth M.
    McGrail, B. Pete
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (15) : 5855 - 5861
  • [28] ADSORPTION OF IODATE BY HEMATITE (FE2O3)
    COUTURE, RA
    SEITZ, MG
    STEINDLER, MJ
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1979, 32 (JUN): : 397 - 397
  • [29] Interaction of neptunyl with goethite (α-FeOOH), maghemite (γ-Fe2O3), and hematite (α-Fe2O3) in water as probed by X-ray photoelectron spectroscopy
    A. Yu. Teterin
    K. I. Maslakov
    Yu. A. Teterin
    S. N. Kalmykov
    K. E. Ivanov
    L. Vukcevic
    A. B. Khasanova
    N. S. Shcherbina
    Russian Journal of Inorganic Chemistry, 2006, 51 : 1937 - 1944
  • [30] Interaction of neptunyl with goethite (α-FeOOH), maghemite (γ-Fe2O3), and hematite (α-Fe2O3) in water as probed by X-ray photoelectron spectroscopy
    Teterin, A. Yu.
    Maslakov, K. I.
    Teterin, Yu. A.
    Kalmykov, S. N.
    Ivanov, K. E.
    Vukcevic, L.
    Khasanova, A. B.
    Shcherbina, N. S.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2006, 51 (12) : 1937 - 1944