Pressure induced phase transition of nanocrystalline and bulk maghemite (γ-Fe2O3) to hematite (α-Fe2O3)

被引:25
|
作者
Zhu, Hongyang [1 ,2 ]
Ma, Yanzhang [1 ]
Yang, Haibin [2 ]
Ji, Cheng [1 ]
Hou, Dongbin [1 ]
Guo, Lingyun [1 ]
机构
[1] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
[2] Jilin Univ, Natl Lab Superhard Mat, Changchun 130012, Jilin, Peoples R China
关键词
High Pressure; X-ray diffraction; X-RAY-DIFFRACTION; STRUCTURAL TRANSITIONS; SIZE DEPENDENCE; TRANSFORMATION; NANOPARTICLES; SPECTROSCOPY; STABILITY; MOSSBAUER;
D O I
10.1016/j.jpcs.2010.03.031
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phase transition and bulk moduli of bulk and nanocrystalline gamma-Fe2O3 were studied using synchrotron X-ray diffraction under high pressure. Contrary to most other nanomaterials, nanocrystalline gamma-Fe2O3 begins to transform into alpha-Fe2O3 at the same pressure as bulk gamma-Fe2O3, which is caused by a special structure of gamma-Fe2O3, in which there exist vacancies of crystal. It is believed that phase transition starts from a certain site of vacancy because of the stress concentration at vacancy sites. Compared to bulk material, nanocrystalline gamma-Fe2O3 has a larger bulk modulus, which is ascribed to the large ratio of surface to volume. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1183 / 1186
页数:4
相关论文
共 50 条
  • [41] Thermal stability of nanocrystalline ε-Fe2O3
    Brazda, Petr
    Vecernikova, Eva
    Plizingrova, Eva
    Lancok, Adriana
    Niznansky, Daniel
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 117 (01) : 85 - 91
  • [42] Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application
    Saritas, Sevda
    Kundakci, Mutlu
    Coban, Omer
    Tuzemen, Sebahattin
    Yildirim, Muhammet
    PHYSICA B-CONDENSED MATTER, 2018, 541 : 14 - 18
  • [43] Thermal stability of nanocrystalline ε-Fe2O3
    Petr Brázda
    Eva Večerníková
    Eva Pližingrová
    Adriana Lančok
    Daniel Nižňanský
    Journal of Thermal Analysis and Calorimetry, 2014, 117 : 85 - 91
  • [44] Facile approach to suppress γ-Fe2O3 to α-Fe2O3 phase transition beyond 600°C in Fe3O4 nanoparticles
    Pati, S. S.
    Herojit Singh, L.
    Mantilla Ochoa, J. C.
    Guimaraesa, E. M.
    Sales, M. J. A.
    Coaquira, J. A. H.
    Oliveira, A. C.
    Garg, V. K.
    MATERIALS RESEARCH EXPRESS, 2015, 2 (04):
  • [45] Doping γ-Fe2O3 nanoparticles with Mn(III) suppresses the transition to the α-Fe2O3 structure
    Lai, Jriuan
    Shafi, Kurikka V. P. M.
    Loos, Katja
    Ulman, Abraham
    Lee, Yongjae
    Vogt, Thomas
    Estournes, Claude
    Journal of the American Chemical Society, 2003, 125 (38): : 11470 - 11471
  • [46] Doping γ-Fe2O3 nanoparticles with Mn(III) suppresses the transition to the α-Fe2O3 structure
    Lai, JR
    Shafi, KVPM
    Loos, K
    Ulman, A
    Lee, Y
    Vogt, T
    Estournès, C
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (38) : 11470 - 11471
  • [47] The reducibility of Fe2O3 and supported Ru/Fe2O3 catalysts
    Józwiak, WK
    Maniecki, TP
    Gebauer, D
    PRZEMYSL CHEMICZNY, 2003, 82 (03): : 134 - 137
  • [48] Rietveld analysis and Mossbauer spectroscopy studies of nanocrystalline hematite α-Fe2O3
    Lemine, O. M.
    Sajieddine, M.
    Bououdina, M.
    Msalam, R.
    Mufti, S.
    Alyamani, A.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 502 (02) : 279 - 282
  • [49] Synthesis and physical characterization of γ-Fe2O3 and (α+γ)-Fe2O3 nanoparticles
    P. Bhavani
    N. Ramamanohar Reddy
    I. Venkata Subba Reddy
    Journal of the Korean Physical Society, 2017, 70 : 150 - 154
  • [50] Comparative Study on Electronic Structure and Optical Properties of α-Fe2O3, Ag/α-Fe2O3 and S/α-Fe2O3
    Zhao, Cuihua
    Li, Baishi
    Zhou, Xi
    Chen, Jianhua
    Tang, Hongqun
    METALS, 2021, 11 (03) : 1 - 13