Evolution of the Fe3+ Ion Local Environment During the Phase Transition ε-Fe2O3 → α-Fe2O3

被引:10
|
作者
Yakushkin, S. S. [1 ,2 ,3 ]
Balaev, D. A. [3 ]
Dubrovskiy, A. A. [3 ]
Semenov, S. V. [3 ]
Shaikhutdinov, K. A. [3 ]
Kazakova, M. A. [1 ,2 ]
Bukhtiyarova, G. A. [1 ,3 ]
Martyanov, O. N. [1 ,2 ,3 ]
Bayukov, O. A. [3 ]
机构
[1] Boreskov Inst Catalysis, Lavrentieva 5, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Fed Res Ctr KSC SB RAS, Kirensky Inst Phys, Krasnoyarsk 660036, Russia
基金
俄罗斯科学基金会;
关键词
epsilon-Fe2O3 iron oxide nanoparticles; Phase transition; Structure size effect; Magnetic properties; Mossbauer spectroscopy; MAGNETIC-PROPERTIES; COERCIVE FIELD; SILICA-GEL; NANOPARTICLES; PARTICLES; IRON; TRANSFORMATION; NANOCRYSTALS; GAMMA-FE2O3; FE2O3/SIO2;
D O I
10.1007/s10948-017-4307-y
中图分类号
O59 [应用物理学];
学科分类号
摘要
Evolution of the local environment of Fe3+ ions in deposited Fe2O3/SiO2 nanoparticles formed in samples with different iron contents was investigated in order to establish the conditions for obtaining the stable epsilon-Fe2O3/SiO2 samples without impurities of other iron oxide polymorphs. Microstructure of the samples with an iron content of up to 16% is studied by high-resolution transmission electron microscopy, X-ray diffraction analysis, and Mossbauer spectroscopy, and their magnetic properties are examined. At iron concentrations below 6%, calcinations of iron-containing precursor nanoparticles in a silica gel matrix lead to the formation of the epsilon-Fe2O3 iron oxide polymorphic modification without foreign phase impurities, while at the iron concentration in the range of 6-12%, the hematite phase forms in the sample in the fraction of no more than 5%. It is concluded on the basis of the data obtained that the spatial stabilization of iron-containing particles is one of the main factors facilitating the formation of the epsilon-Fe2O3 phase in a silica gel matrix without other iron oxide polymorphs. It is demonstrated that the increase in the iron content leads to the formation of larger particles in the sample and gradual changes of the Fe3+ ion local environment during the phase transition epsilon-Fe2O3 -> alpha-Fe2O3.
引用
收藏
页码:1209 / 1217
页数:9
相关论文
共 50 条
  • [1] Evolution of the Fe3+ Ion Local Environment During the Phase Transition ε-Fe2O3 → α-Fe2O3
    S. S. Yakushkin
    D. A. Balaev
    A. A. Dubrovskiy
    S. V. Semenov
    K. A. Shaikhutdinov
    M. A. Kazakova
    G. A. Bukhtiyarova
    O. N. Martyanov
    O. A. Bayukov
    [J]. Journal of Superconductivity and Novel Magnetism, 2018, 31 : 1209 - 1217
  • [2] α-Fe2O3 versus β-Fe2O3: Controlling the Phase of the Transformation Product of ε-Fe2O3 in the Fe2O3/SiO2 System
    Brazda, Petr
    Kohout, Jaroslav
    Bezdicka, Petr
    Kmjec, Tomas
    [J]. CRYSTAL GROWTH & DESIGN, 2014, 14 (03) : 1039 - 1046
  • [3] Magnetic nanoparticles with enhanced γ-Fe2O3 to α-Fe2O3 phase transition temperature
    Gnanaprakash, G.
    Ayyappan, S.
    Jayakumar, T.
    Philip, John
    Raj, Baldev
    [J]. NANOTECHNOLOGY, 2006, 17 (23) : 5851 - 5857
  • [4] Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix : γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3
    El Mendili, Yassine
    Bardeau, Jean-Francois
    Randrianantoandro, Nirina
    Greneche, Jean-Marc
    Grasset, Fabien
    [J]. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2016, 17 (01) : 597 - 609
  • [5] Crystal Structure of β-Fe2O3 and Topotactic Phase Transformation to α-Fe2O3
    Danno, Teruaki
    Nakatsuka, Daisuke
    Kusano, Yoshihiro
    Asaoka, Hiroshi
    Nakanishi, Makoto
    Fujii, Tatsuo
    Ikeda, Yasunori
    Takada, Jun
    [J]. CRYSTAL GROWTH & DESIGN, 2013, 13 (02) : 770 - 774
  • [6] In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3)
    Schimanke, G
    Martin, M
    [J]. SOLID STATE IONICS, 2000, 136 : 1235 - 1240
  • [7] Pressure induced phase transition of nanocrystalline and bulk maghemite (γ-Fe2O3) to hematite (α-Fe2O3)
    Zhu, Hongyang
    Ma, Yanzhang
    Yang, Haibin
    Ji, Cheng
    Hou, Dongbin
    Guo, Lingyun
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2010, 71 (08) : 1183 - 1186
  • [8] Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application
    Saritas, Sevda
    Kundakci, Mutlu
    Coban, Omer
    Tuzemen, Sebahattin
    Yildirim, Muhammet
    [J]. PHYSICA B-CONDENSED MATTER, 2018, 541 : 14 - 18
  • [9] THE γ-α Fe2O3 TRANSITION.
    Olsen, J. S.
    Gerward, L.
    Jiang, J. Z.
    Morup, S.
    Peun, T.
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1996, 52 : C543 - C543
  • [10] Facile approach to suppress γ-Fe2O3 to α-Fe2O3 phase transition beyond 600°C in Fe3O4 nanoparticles
    Pati, S. S.
    Herojit Singh, L.
    Mantilla Ochoa, J. C.
    Guimaraesa, E. M.
    Sales, M. J. A.
    Coaquira, J. A. H.
    Oliveira, A. C.
    Garg, V. K.
    [J]. MATERIALS RESEARCH EXPRESS, 2015, 2 (04):