Path integral for non-paraxial optics

被引:7
|
作者
Braidotti, Maria Chiara [1 ,2 ,10 ]
Conti, Claudio [2 ,3 ]
Faizal, Mir [4 ,5 ]
Dey, Sanjib [6 ]
Alasfar, Lina [7 ,11 ]
Alsaleh, Salwa [8 ]
Ashour, Amani [9 ]
机构
[1] Univ Aquila, Dept Phys & Chem Sci, Via Vetoio 10, I-67010 Laquila, Italy
[2] Natl Res Council ISC CNR, Inst Complex Syst, Via Taurini 19, I-00185 Rome, Italy
[3] Univ Sapienza, Dept Phys, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Univ British Columbia Okanagan, Irving K Barber Sch Arts & Sci, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[5] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada
[6] Indian Inst Sci Educ & Res Mohali, Dept Phys Sci, Sect 81, Sas Nagar 140306, Manauli, India
[7] Univ Clermont Auvergne, 4,Ave Blaise Pascal, F-63178 Aubire, France
[8] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[9] Damascus Univ, Fac Sci, Math Dept, Damascus, Syria
[10] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland
[11] Max Planck Inst Nucl Phys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
关键词
GENERALIZED UNCERTAINTY PRINCIPLE; HAWKING RADIATION; LENGTH; ANALOG; SOLITONS; EQUATION; SPACE; PHASE;
D O I
10.1209/0295-5075/124/44001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we have constructed the Feynman path integral method for non-paraxial optics. This is done by using the mathematical analogy between a non-paraxial optical system and the generalized Schrodinger equation deformed by the existence a minimal measurable length. Using this analogy, we investigated the consequences of a minimal length in this optical system. This path integral has been used to obtain instanton solution for such an optical system. Moreover, the Berry phase of this optical system has been investigated. These results may disclose a new way to use the path integral approach in optics. Furthermore, as such systems with an intrinsic minimal length have been studied in quantum gravity, the ultra-focused optical pulses can be used as an optical analog of quantum gravity. Copyright (C) EPLA, 2018.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Non-paraxial analytical solution for the generation of focal curves
    Jaroszewicz, Z
    Kolodziejczyk, A
    Sypek, M
    GomezReino, C
    JOURNAL OF MODERN OPTICS, 1996, 43 (03) : 617 - 637
  • [42] Fourier analysis of non-paraxial self-focusing
    de la Fuente, R
    Varela, O
    Michinel, H
    OPTICS COMMUNICATIONS, 2000, 173 (1-6) : 403 - 411
  • [43] Propagation of non-paraxial fields by parabasal field decomposition
    Asoubar, Daniel
    Zhang, Site
    Wyrowski, Frank
    Kuhn, Michael
    OPTICAL MODELLING AND DESIGN II, 2012, 8429
  • [44] The Analysis of Talbot Effect of a Grating at Non-paraxial Assumption
    Wang Huaisheng
    2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, : 769 - 771
  • [45] Propagation properties of a non-paraxial hollow Gaussian beam
    Zhou, Guoquan
    OPTICS AND LASER TECHNOLOGY, 2009, 41 (05): : 562 - 569
  • [46] PARAXIAL AND NON-PARAXIAL RAY SPEEDS IN STRONGLY RANGE-DEPENDENT SOFAR CHANNELS
    SHOCKLEY, RC
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1978, 64 (04): : 1171 - 1177
  • [47] GAUSSIAN BEAM MODELING OF SAR ENHANCEMENT IN PARAXIAL AND NON-PARAXIAL REGIONS OF BIOLOGICAL TISSUES
    Lumori, M. L. D.
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2010, 11 : 1 - 12
  • [48] Non-paraxial transverse vector fields closest to non-polarized beams
    Martínez-Herrero, R
    Mejías, PM
    Bosch, S
    Carnicer, A
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2004, 6 (03): : S64 - S66
  • [49] Analysis of non-paraxial solitons using a collective variable approach
    Fewo, Serge I.
    Moussambi, Hermance
    Kofane, Timoleon C.
    PHYSICA SCRIPTA, 2011, 84 (03)
  • [50] Parabasal field decomposition and its application to non-paraxial propagation
    Asoubar, Daniel
    Zhang, Site
    Wyrowski, Frank
    Kuhn, Michael
    OPTICS EXPRESS, 2012, 20 (21): : 23502 - 23517