Path integral for non-paraxial optics

被引:7
|
作者
Braidotti, Maria Chiara [1 ,2 ,10 ]
Conti, Claudio [2 ,3 ]
Faizal, Mir [4 ,5 ]
Dey, Sanjib [6 ]
Alasfar, Lina [7 ,11 ]
Alsaleh, Salwa [8 ]
Ashour, Amani [9 ]
机构
[1] Univ Aquila, Dept Phys & Chem Sci, Via Vetoio 10, I-67010 Laquila, Italy
[2] Natl Res Council ISC CNR, Inst Complex Syst, Via Taurini 19, I-00185 Rome, Italy
[3] Univ Sapienza, Dept Phys, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Univ British Columbia Okanagan, Irving K Barber Sch Arts & Sci, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[5] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada
[6] Indian Inst Sci Educ & Res Mohali, Dept Phys Sci, Sect 81, Sas Nagar 140306, Manauli, India
[7] Univ Clermont Auvergne, 4,Ave Blaise Pascal, F-63178 Aubire, France
[8] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[9] Damascus Univ, Fac Sci, Math Dept, Damascus, Syria
[10] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland
[11] Max Planck Inst Nucl Phys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
关键词
GENERALIZED UNCERTAINTY PRINCIPLE; HAWKING RADIATION; LENGTH; ANALOG; SOLITONS; EQUATION; SPACE; PHASE;
D O I
10.1209/0295-5075/124/44001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we have constructed the Feynman path integral method for non-paraxial optics. This is done by using the mathematical analogy between a non-paraxial optical system and the generalized Schrodinger equation deformed by the existence a minimal measurable length. Using this analogy, we investigated the consequences of a minimal length in this optical system. This path integral has been used to obtain instanton solution for such an optical system. Moreover, the Berry phase of this optical system has been investigated. These results may disclose a new way to use the path integral approach in optics. Furthermore, as such systems with an intrinsic minimal length have been studied in quantum gravity, the ultra-focused optical pulses can be used as an optical analog of quantum gravity. Copyright (C) EPLA, 2018.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] On the longitudinal polarization of non-paraxial electromagnetic fields
    Martinez-Herrero, R.
    Mejias, P. M.
    Manjavacas, A.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 99 (03): : 579 - 584
  • [22] Non-paraxial beam to push and pull microparticles
    Novitsky, A. V.
    Qiu, C. -W.
    FOURTH INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL NANOPHOTONICS (TACONA-PHOTONICS 2011), 2011, 1398
  • [23] Non-Paraxial Acceleration and Rotation in Curved Surfaces
    Bekenstein, Rivka
    Sharabi, Yonatan
    Nemirovsky, Jonathan
    Kaminer, Ido
    Carmon, Tal
    Segev, Mordechai
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [24] THE LUNEBURG APODIZATION PROBLEM IN THE NON-PARAXIAL DOMAIN
    STAMNES, JJ
    OPTICS COMMUNICATIONS, 1981, 38 (5-6) : 325 - 329
  • [25] Non-paraxial dispersive shock-waves
    Gentilini, Silvia
    Del Re, Eugenio
    Conti, Claudio
    OPTICS COMMUNICATIONS, 2015, 355 : 445 - 450
  • [26] On the longitudinal polarization of non-paraxial electromagnetic fields
    R. Martínez-Herrero
    P. M. Mejías
    A. Manjavacas
    Applied Physics B, 2010, 99 : 579 - 584
  • [27] Non-paraxial model for a parametric acoustic array
    Cervenka, Milan
    Bednarik, Michal
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2013, 134 (02): : 933 - 938
  • [28] Non-paraxial plasma equilibria in axisymmetric mirrors
    Arsenin, Vladimir V.
    Kuyanov, Alexey Yu.
    Fusion Technology, 2001, 39 (1 T): : 175 - 178
  • [29] Propagation properties of non-paraxial spatial solitons
    Chamorro-Posada, P.
    McDonald, G.S.
    New, G.H.C.
    Journal of Modern Optics, 2000, 47 (11 SPEC.) : 1877 - 1886
  • [30] Nonlinear generation of non-paraxial accelerating beam
    Zheng, Guoliang
    Xu, Shixiang
    Wu, Qingyang
    Cao, Jianmin
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,