Path integral for non-paraxial optics

被引:7
|
作者
Braidotti, Maria Chiara [1 ,2 ,10 ]
Conti, Claudio [2 ,3 ]
Faizal, Mir [4 ,5 ]
Dey, Sanjib [6 ]
Alasfar, Lina [7 ,11 ]
Alsaleh, Salwa [8 ]
Ashour, Amani [9 ]
机构
[1] Univ Aquila, Dept Phys & Chem Sci, Via Vetoio 10, I-67010 Laquila, Italy
[2] Natl Res Council ISC CNR, Inst Complex Syst, Via Taurini 19, I-00185 Rome, Italy
[3] Univ Sapienza, Dept Phys, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Univ British Columbia Okanagan, Irving K Barber Sch Arts & Sci, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[5] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada
[6] Indian Inst Sci Educ & Res Mohali, Dept Phys Sci, Sect 81, Sas Nagar 140306, Manauli, India
[7] Univ Clermont Auvergne, 4,Ave Blaise Pascal, F-63178 Aubire, France
[8] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[9] Damascus Univ, Fac Sci, Math Dept, Damascus, Syria
[10] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland
[11] Max Planck Inst Nucl Phys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
关键词
GENERALIZED UNCERTAINTY PRINCIPLE; HAWKING RADIATION; LENGTH; ANALOG; SOLITONS; EQUATION; SPACE; PHASE;
D O I
10.1209/0295-5075/124/44001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we have constructed the Feynman path integral method for non-paraxial optics. This is done by using the mathematical analogy between a non-paraxial optical system and the generalized Schrodinger equation deformed by the existence a minimal measurable length. Using this analogy, we investigated the consequences of a minimal length in this optical system. This path integral has been used to obtain instanton solution for such an optical system. Moreover, the Berry phase of this optical system has been investigated. These results may disclose a new way to use the path integral approach in optics. Furthermore, as such systems with an intrinsic minimal length have been studied in quantum gravity, the ultra-focused optical pulses can be used as an optical analog of quantum gravity. Copyright (C) EPLA, 2018.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] An Efficient Scalar, Non-Paraxial Beam Propagation Method
    Motes, R. Andrew
    Shakir, Sami A.
    Berdine, Richard W.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (01) : 4 - 8
  • [32] Helmholtz non-paraxial beam propagation method: An assessment
    Chamorro-Posada, Pedro
    McDonald, Graham S.
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2014, 23 (04)
  • [33] Non-paraxial diffractive and refractive laser beam shaping
    Yang, Liangxin
    Knoth, Roberto
    Hellmann, Christian
    Wyrowski, Frank
    LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XX, 2018, 10518
  • [34] Wigner function and ambiguity function for non-paraxial wavefields
    Sheppard, CJR
    Larkin, KG
    OPTICAL PROCESSING AND COMPUTING: A TRIBUTE TO ADOLF LOHMANN, 2001, 4392 : 99 - 103
  • [35] Wave dislocation reactions in non-paraxial Gaussian beams
    Berry, MV
    JOURNAL OF MODERN OPTICS, 1998, 45 (09) : 1845 - 1858
  • [36] Propagation of non-paraxial nonsymmetrical vector Gaussian beam
    Zhou, GQ
    Chen, RP
    Chen, JL
    OPTICS COMMUNICATIONS, 2006, 259 (01) : 32 - 39
  • [37] Quantum operator for non-paraxial single photon interference
    Castaneda, Roman
    Hurtado, Camilo
    REVISTA DE LA ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS FISICAS Y NATURALES, 2024, 48 (189): : 768 - 783
  • [38] Split step non-paraxial beam propagation method
    Sharma, A
    Agrawal, A
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XII, 2004, 5349 : 132 - 142
  • [39] Non-Paraxial Diffraction Effect of High NA Objectives
    Lee, Jong Ung
    KOREAN JOURNAL OF OPTICS AND PHOTONICS, 2014, 25 (01) : 8 - 13
  • [40] Evanescent field of vectorial highly non-paraxial beams
    Martinez-Herrero, R.
    Mejias, P. M.
    Carnicer, A.
    OPTICS EXPRESS, 2008, 16 (05): : 2845 - 2858