Geometry Optimization of the Active Site of a Large System with the Fragment Molecular Orbital Method

被引:59
|
作者
Fedorov, Dmitri G. [1 ]
Alexeev, Yuri [2 ]
Kitaura, Kazuo [1 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[2] Inst Food Res, Colney NR4 7UA, Norfolk, England
[3] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan
来源
基金
英国生物技术与生命科学研究理事会;
关键词
ENERGY; BINDING; PROTEIN; MODEL; ACCURATE; QM/MM;
D O I
10.1021/jz1016894
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An efficient formulation of the fragment molecular orbital method is introduced based on dividing the system into frozen and polarizable domains. The former is computed once taking into account the many-body polarization of the whole system, while the latter is recalculated for each step of a geometry optimization. We performed ligand docking and calibrated the method on the complexes of the Trp-cage miniprotein construct (PDB: 1L2Y) with neutral and charged ligands and applied it to optimize a partially solvated structure of prostaglandin containing the polarizable and frozen domains respectively. The optimization took 32 h on six dual CPU quad-core 2.83 GHz Xeon nodes. Our method requires no fitted parameters and allows optimizations of large systems based solely on quantum mechanics.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 50 条
  • [41] Solvent Screening in Zwitterions Analyzed with the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (10) : 5404 - 5416
  • [42] Derivatives of the approximated electrostatic potentials in the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2009, 475 (1-3) : 124 - 131
  • [43] Fully analytic energy gradient for the fragment molecular orbital method
    Nagata, Takeshi
    Brorsen, Kurt R.
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [44] Fragment molecular orbital method: use of approximate electrostatic potential
    Nakano, T
    Kaminuma, T
    Sato, T
    Fukuzawa, K
    Akiyama, Y
    Uebayasi, M
    Kitaura, K
    CHEMICAL PHYSICS LETTERS, 2002, 351 (5-6) : 475 - 480
  • [45] Simulations of Raman Spectra Using the Fragment Molecular Orbital Method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Yokojima, Satoshi
    Kitaura, Kazuo
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (09) : 3689 - 3698
  • [46] A COUPLED FRAGMENT MOLECULAR-ORBITAL METHOD FOR INTERACTING SYSTEMS
    FUJIMOTO, H
    KOGA, N
    FUKUI, K
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1981, 103 (25) : 7452 - 7457
  • [47] Statistical correction to effective interactions in the fragment molecular orbital method
    Tanaka, Shigenori
    Watanabe, Chiduru
    Okiyama, Yoshio
    CHEMICAL PHYSICS LETTERS, 2013, 556 : 272 - 277
  • [48] Radical damage in lipids investigated with the fragment molecular orbital method
    Green, Mandy C.
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Slipchenko, Lyudmila V.
    CHEMICAL PHYSICS LETTERS, 2016, 651 : 56 - 61
  • [49] Fully analytic gradient for the effective fragment molecular orbital method
    Bertoni, Colleen
    Gordon, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [50] Applications of the Fragment Molecular Orbital Method for Bio-Macromolecules
    Fukuzawa, Kaori
    Nakano, Tatsuya
    Kato, Akifumi
    Mochizuki, Yuji
    Tanaka, Shigenori
    JOURNAL OF COMPUTER CHEMISTRY-JAPAN, 2007, 6 (03) : 185 - 197