Geometry Optimization of the Active Site of a Large System with the Fragment Molecular Orbital Method

被引:59
|
作者
Fedorov, Dmitri G. [1 ]
Alexeev, Yuri [2 ]
Kitaura, Kazuo [1 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[2] Inst Food Res, Colney NR4 7UA, Norfolk, England
[3] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan
来源
基金
英国生物技术与生命科学研究理事会;
关键词
ENERGY; BINDING; PROTEIN; MODEL; ACCURATE; QM/MM;
D O I
10.1021/jz1016894
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An efficient formulation of the fragment molecular orbital method is introduced based on dividing the system into frozen and polarizable domains. The former is computed once taking into account the many-body polarization of the whole system, while the latter is recalculated for each step of a geometry optimization. We performed ligand docking and calibrated the method on the complexes of the Trp-cage miniprotein construct (PDB: 1L2Y) with neutral and charged ligands and applied it to optimize a partially solvated structure of prostaglandin containing the polarizable and frozen domains respectively. The optimization took 32 h on six dual CPU quad-core 2.83 GHz Xeon nodes. Our method requires no fitted parameters and allows optimizations of large systems based solely on quantum mechanics.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 50 条
  • [21] The Effective Fragment Molecular Orbital Method: Achieving High Scalability and Accuracy for Large Systems
    Sattasathuchana, Tosaporn
    Xu, Peng
    Bertoni, Colleen
    Kim, Yu Lim
    Leang, Sarom S.
    Pham, Buu Q.
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (06) : 2445 - 2461
  • [22] A fragment molecular-orbital-multicomponent molecular-orbital method for analyzing H/D isotope effects in large molecules
    Ishimoto, T
    Tachikawa, M
    Nagashima, U
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (01):
  • [23] Molecular Electrostatic Potential and Electron Density of Large Systems in Solution Computed with the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Brekhov, Anton
    Mironov, Vladimir
    Alexeev, Yuri
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (29): : 6281 - 6290
  • [24] Investigation of Hot Spot Region in XIAP Inhibitor Binding Site by Fragment Molecular Orbital Method
    Lim, Hocheol
    Jin, Xuemei
    Kim, Jongwan
    Hwang, Sungbo
    Shin, Ki Beom
    Choi, Jiwon
    Nam, Ky-Youb
    No, Kyoung Tai
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2019, 17 : 1217 - 1225
  • [26] Efficient implementation of the three-dimensional reference interaction site model method in the fragment molecular orbital method
    Yoshida, Norio
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (21):
  • [27] Molecular orbital of fragment molecular orbital method with Sakurai-Sugiura method on grid computing environment
    Nagashima, Umpei
    Watanabe, Toshio
    Inadomi, Yuichi
    Umeda, Hiroaki
    Ishimoto, Takayoshi
    Sakurai, Tetsuya
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 21 - 21
  • [28] Fragmentation of disulfide bonds in the fragment molecular orbital method
    Fedorov, Dmitri G.
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2024, 1241
  • [29] The fragment molecular orbital method and understanding monomer polarization
    Churchill, Cassandra D. M.
    CHEMICAL PHYSICS LETTERS, 2012, 554 : 185 - 189
  • [30] Analytic Gradients for the Effective Fragment Molecular Orbital Method
    Bertoni, Colleen
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (10) : 4743 - 4767