Geometry Optimization of the Active Site of a Large System with the Fragment Molecular Orbital Method

被引:59
|
作者
Fedorov, Dmitri G. [1 ]
Alexeev, Yuri [2 ]
Kitaura, Kazuo [1 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[2] Inst Food Res, Colney NR4 7UA, Norfolk, England
[3] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan
来源
基金
英国生物技术与生命科学研究理事会;
关键词
ENERGY; BINDING; PROTEIN; MODEL; ACCURATE; QM/MM;
D O I
10.1021/jz1016894
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An efficient formulation of the fragment molecular orbital method is introduced based on dividing the system into frozen and polarizable domains. The former is computed once taking into account the many-body polarization of the whole system, while the latter is recalculated for each step of a geometry optimization. We performed ligand docking and calibrated the method on the complexes of the Trp-cage miniprotein construct (PDB: 1L2Y) with neutral and charged ligands and applied it to optimize a partially solvated structure of prostaglandin containing the polarizable and frozen domains respectively. The optimization took 32 h on six dual CPU quad-core 2.83 GHz Xeon nodes. Our method requires no fitted parameters and allows optimizations of large systems based solely on quantum mechanics.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 50 条
  • [31] Applications of the Fragment Molecular Orbital Method in Drug Discovery
    Ishikawa, Takeshi
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2016, 136 (01): : 121 - 130
  • [32] Fully Integrated Effective Fragment Molecular Orbital Method
    Pruitt, Spencer R.
    Steinmann, Casper
    Jensen, Jan H.
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (05) : 2235 - 2249
  • [33] Multilayer formulation of the fragment molecular orbital method (FMO)
    Fedorov, DG
    Ishida, T
    Kitaura, K
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (11): : 2638 - 2646
  • [34] Fragment molecular orbital method: analytical energy gradients
    Kitaura, K
    Sugiki, SI
    Nakano, T
    Komeiji, Y
    Uebayasi, M
    CHEMICAL PHYSICS LETTERS, 2001, 336 (1-2) : 163 - 170
  • [35] Fragment Molecular Orbital method: Not just for proteins anymore
    Pruitt, Spencer R.
    Gordon, Mark S.
    Fedorov, Dmitri G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [36] Extension of the fragment molecular orbital method to treat large open-shell systems in solution
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Nakamura, Shinichiro
    CHEMICAL PHYSICS LETTERS, 2015, 635 : 86 - 92
  • [37] Excited states in large molecular systems by the combined quantum Monte Carlo/effective fragment molecular orbital method
    Zahariev, Federico
    Findlater, Alexander
    Gordon, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [38] Nuclear-Electronic Orbital Method within the Fragment Molecular Orbital Approach
    Auer, Benjamin
    Pak, Michael V.
    Hammes-Schiffer, Sharon
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (12): : 5582 - 5588
  • [39] Reducing the scaling of the fragment molecular orbital method using the multipole method
    Choi, Cheol Ho
    Fedorov, Dmitri G.
    CHEMICAL PHYSICS LETTERS, 2012, 543 : 159 - 165
  • [40] RI-MP2 Gradient Calculation of Large Molecules Using the Fragment Molecular Orbital Method
    Ishikawa, Takeshi
    Kuwata, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (03): : 375 - 379