Gaussian Pell and Gaussian Pell-Lucas Quaternions

被引:3
|
作者
Arslan, Hasan [1 ]
机构
[1] Erciyes Univ, Fac Sci, Dept Math, TR-38039 Kayseri, Turkey
关键词
Gaussian Pell and Gaussian Pell-Lucas numbers; recurrence relations; quaternions; generating functions; FIBONACCI; NUMBERS;
D O I
10.2298/FIL2105609A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this work is to introduce the Gaussian Pell quaternion QGp(n) and Gaussian Pell-Lucas quaternion OGq(n), where the components of QGp(n) and QGq(n) are Pell numbers p(n) and Pell-Lucas numbers q(n), respectively. Firstly, we obtain the recurrence relations and Binet formulas for QGp(n) and QGq(n). We use Binet formulas to prove Cassini's identity for these quaternions. Furthermore, we give some basic identities for QGp(n) and OGq(n) such as some summation formulas, the terms with negative indices and the generating functions for these complex quaternions.
引用
收藏
页码:1609 / 1617
页数:9
相关论文
共 50 条
  • [41] Binomial summation formulas involving Pell and Pell-Lucas polynomials
    Chen, Yulei
    Zhao, Yanan
    Guo, Dongwei
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (02)
  • [42] Pell and Pell-Lucas numbers which are concatenations of three repdigits
    Erduvan, Fatih
    Duman, Merve Guney
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [43] p-Analogue of biperiodic Pell and Pell-Lucas polynomials
    Kuloglu, Bahar
    Ozkan, Engin
    Shannon, Anthony G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (02) : 336 - 347
  • [44] PELL AND PELL-LUCAS NUMBERS WHICH ARE CONCATENATIONS OF TWO REPDIGITS
    Duman, Merve Guney
    Erduvan, Fatih
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (04): : 572 - 584
  • [45] Powers in products of terms of Pell's and Pell-Lucas sequences
    Bravo, Jhon J.
    Das, Pranabesh
    Guzman, Sergio
    Laishram, Shanta
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (04) : 1259 - 1274
  • [46] Pell and Pell-Lucas numbers of the form xa±xb+1
    Kafle, Bir
    Rihane, Salah Eddine
    Togbe, Alain
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 879 - 893
  • [47] On the intersection of Padovan, Perrin sequences and Pell, Pell-Lucas sequences
    Rihane, Salah Eddine
    Togbe, Alain
    ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 54 : 57 - 71
  • [48] The Binet formulas for the Pell and Pell-Lucas p-numbers
    Kocer, E. Gokcen
    Tuglu, Naim
    ARS COMBINATORIA, 2007, 85 : 3 - 17
  • [49] A Pell-Lucas Computation of Pi Solution
    Bracken, P.
    Bradie, B.
    Budney, P.
    Chapman, R.
    Fera, G.
    Garth, D.
    Gatesman, K.
    Koo, K. T. L.
    Lossers, O. P.
    Molinari, R.
    Omarjee, M.
    Prasad, M. A.
    Stadler, A.
    Stong, R.
    Tauraso, R.
    Wiandt, T.
    Xiang, Y.
    Zacharias, J.
    Zhou, L.
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (07): : 667 - 667
  • [50] On generalized (k, r)-Pell and (k, r)-Pell-Lucas numbers
    Kuloglu, Bahar
    ozkan, Engin
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (04) : 765 - 777