Gaussian Pell and Gaussian Pell-Lucas Quaternions

被引:3
|
作者
Arslan, Hasan [1 ]
机构
[1] Erciyes Univ, Fac Sci, Dept Math, TR-38039 Kayseri, Turkey
关键词
Gaussian Pell and Gaussian Pell-Lucas numbers; recurrence relations; quaternions; generating functions; FIBONACCI; NUMBERS;
D O I
10.2298/FIL2105609A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this work is to introduce the Gaussian Pell quaternion QGp(n) and Gaussian Pell-Lucas quaternion OGq(n), where the components of QGp(n) and QGq(n) are Pell numbers p(n) and Pell-Lucas numbers q(n), respectively. Firstly, we obtain the recurrence relations and Binet formulas for QGp(n) and QGq(n). We use Binet formulas to prove Cassini's identity for these quaternions. Furthermore, we give some basic identities for QGp(n) and OGq(n) such as some summation formulas, the terms with negative indices and the generating functions for these complex quaternions.
引用
收藏
页码:1609 / 1617
页数:9
相关论文
共 50 条
  • [31] Repdigits as Products of Consecutive Pell or Pell-Lucas Numbers
    Bravo, Eric F.
    Bravo, Jhon J.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2024, 19 (01): : 63 - 70
  • [32] ON GENERALIZED LUCAS AND PELL-LUCAS SEQUENCES
    Tasci, Dursun
    Tas, Zisan Kusaksiz
    JOURNAL OF SCIENCE AND ARTS, 2019, (03): : 637 - 646
  • [33] REPDIGITS AS DIFFERENCE OF TWO PELL OR PELL-LUCAS NUMBERS
    Erduvan, Fatih
    Keskin, Refik
    KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (01): : 63 - 73
  • [34] Pell and Pell-Lucas numbers as difference of two repdigits
    Edjeou, Bilizimbeye
    Faye, Bernadette
    AFRIKA MATEMATIKA, 2023, 34 (04)
  • [35] Pell numbers, Pell-Lucas numbers and modular group
    Mushtaq, Q.
    Hayat, U.
    ALGEBRA COLLOQUIUM, 2007, 14 (01) : 97 - 102
  • [36] HYPERBOLIC ARCTANGENT SUMMATIONS OF PELL AND PELL-LUCAS POLYNOMIALS
    Guo, Dongwei
    Chu, Wenchang
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2024, 115 (129): : 77 - 100
  • [37] A Pell-Lucas Computation of Pi
    Ohtsuka, Hideyuki
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (07): : 666 - 666
  • [38] Pell and Pell-Lucas numbers with only one distinct digit
    Faye, Bernadette
    Luca, Florian
    ANNALES MATHEMATICAE ET INFORMATICAE, 2015, 45 : 55 - 60
  • [39] Inverse tangent series involving pell and pell-lucas polynomials
    Guo, Dongwei
    Chu, Wenchang
    MATHEMATICA SLOVACA, 2022, 72 (04) : 869 - 884
  • [40] The Pell and Pell-Lucas Numbers via Square Roots of Matrices
    Arslan, Saadet
    Koken, Fikri
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2016, 8 (03): : 159 - 166