p-Analogue of biperiodic Pell and Pell-Lucas polynomials

被引:0
|
作者
Kuloglu, Bahar [1 ]
Ozkan, Engin [2 ]
Shannon, Anthony G. [3 ]
机构
[1] Erzincan Binali Yildirim Univ, Grad Sch Nat & Appl Sci, Dept Math, Yalnizbag Campus, TR-24100 Erzincan, Turkiye
[2] Erzincan Binali Yildirim Univ, Fac Arts & Sci, Dept Math, Yalnizbag Campus, TR-24100 Erzincan, Turkiye
[3] Univ New South Wales, Warrane Coll, Kensington, NSW 2033, Australia
关键词
p-Analogue Pell; Pell-Lucas polynomials; Biperiodic polynomials; Incomplete sequences; FIBONACCI;
D O I
10.7546/nntdm.2023.29.2.336-347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, a binomial sum, unlike but analogous to the usual binomial sums, expressed with a different definition and termed the p-integer sum. Based on this definition, p-analogue Pell and Pell-Lucas polynomials are established and the generating functions of these new polynomials are obtained. Some theorems and propositions depending on the generating functions are also expressed. Then, by association with these, the polynomials of so-called 'incomplete' number sequences have been obtained, and elegant summation relations provided. The paper has also been placed in the appropriate historical context for ease of further development.
引用
收藏
页码:336 / 347
页数:12
相关论文
共 50 条
  • [1] PELL AND PELL-LUCAS POLYNOMIALS
    HORADAM, AF
    MAHON, BJM
    [J]. FIBONACCI QUARTERLY, 1985, 23 (01): : 7 - 20
  • [2] POWER SUMS OF PELL AND PELL-LUCAS POLYNOMIALS
    Chu, Wenchang
    Li, Nadia N.
    [J]. FIBONACCI QUARTERLY, 2011, 49 (02): : 139 - 150
  • [3] INTEGRATION AND DERIVATIVE SEQUENCES FOR PELL AND PELL-LUCAS POLYNOMIALS
    HORADAM, AF
    SWITA, B
    FILIPPONI, P
    [J]. FIBONACCI QUARTERLY, 1994, 32 (02): : 130 - 135
  • [4] Gaussian Pell-Lucas Polynomials
    Yagmur, Tulay
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (04): : 673 - 679
  • [5] HYPERBOLIC ARCTANGENT SUMMATIONS OF PELL AND PELL-LUCAS POLYNOMIALS
    Guo, Dongwei
    Chu, Wenchang
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2024, 115 (129): : 77 - 100
  • [6] Inverse tangent series involving pell and pell-lucas polynomials
    Guo, Dongwei
    Chu, Wenchang
    [J]. MATHEMATICA SLOVACA, 2022, 72 (04) : 869 - 884
  • [7] Pell and pell-lucas trees
    [J]. Koshy, T. (tkoshy@framingham.edu), 1600, Applied Probability Trust (39):
  • [8] Pell and Pell-Lucas hybrid quaternions
    Kuruz, Ferhat
    Dagdeviren, Ali
    [J]. FILOMAT, 2023, 37 (25) : 8425 - 8434
  • [9] Relationships Between Pell And Pell-Lucas Polynomials And Extended Hecke Groups
    Birol, Furkan
    Koruoglu, Ozden
    [J]. APPLIED MATHEMATICS E-NOTES, 2022, 22 : 766 - 774
  • [10] PERFECT PELL AND PELL-LUCAS NUMBERS
    Bravo, Jhon J.
    Luca, Florian
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (04) : 381 - 387