Application of Radial Basis Functions to Represent Optical Freeform Surfaces

被引:8
|
作者
Cakmakci, Ozan [1 ]
Kaya, Ilhan [2 ]
Fasshauer, Gregory E. [3 ]
Thompson, Kevin P. [1 ]
Rolland, Jannick P. [4 ]
机构
[1] Opt Res Associates, 3280 E Foothill Blvd,Suite 300, Pasadena, CA 91107 USA
[2] Univ Cent Florida, CREOL, Sch Elect Engn & Comp Sci, Orlando, FL 32816 USA
[3] IIT, Dept Math Appl, Chicago, IL 60616 USA
[4] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
关键词
Aspherics; Nonspherical mirror surfaces; SHAPE-DESCRIPTION;
D O I
10.1117/12.871820
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the use of radial basis functions (RBF) for describing freeform optical surfaces. The RBF approximation framework along with preliminary optical design experiences will be summarized.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Comparison of Radial Basis Functions
    Rozhenko, A., I
    NUMERICAL ANALYSIS AND APPLICATIONS, 2018, 11 (03) : 220 - 235
  • [32] Scaling of radial basis functions
    Larsson, Elisabeth
    Schaback, Robert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 1130 - 1152
  • [33] Deformable radial basis functions
    Huebner, Wolfgang
    Mallot, Hanspeter A.
    ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 1, PROCEEDINGS, 2007, 4668 : 411 - +
  • [34] Applying radial basis functions
    Mulgrew, B
    IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (02) : 50 - 65
  • [35] Robustness of radial basis functions
    Eickhoff, Ralf
    Rueckert, Ulrich
    NEUROCOMPUTING, 2007, 70 (16-18) : 2758 - 2767
  • [36] Radial basis functions for the sphere
    Baxter, BJC
    Hubbert, S
    RECENT PROGRESS IN MULTIVARIATE APPROXIMATION, 2001, 137 : 33 - 47
  • [37] Application of Radial Basis Functions in Neural Networks for Prognosis of Economic Parameters
    Dudnik, Olga V.
    Bidyuk, Pyetr I.
    Journal of Automation and Information Sciences, 2003, 35 (1-4) : 39 - 45
  • [38] Application of radial basis functions to evolution equations arising in image segmentation
    Li Shu-Ling
    Li Xiao-Lin
    CHINESE PHYSICS B, 2014, 23 (02)
  • [39] Application of radial basis functions to evolution equations arising in image segmentation
    李淑玲
    李小林
    Chinese Physics B, 2014, (02) : 587 - 592
  • [40] Radial basis functions for multidimensional learning with an application to nondestructive sizing of defects
    Ahmed, S. Shuaib
    Rao, B. Purna Chandra
    Jayakumar, T.
    2013 IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE (FOCI), 2013, : 38 - 43