Asymptotic cones and Assouad-Nagata dimension

被引:12
|
作者
Dydak, J. [1 ]
Higes, J. [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Univ Complutense Madrid, Dept Geometria & Topologia, Fac CC Matemat, E-28040 Madrid, Spain
关键词
Assouad-Nagata dimension; asymptotic dimension; asymptotic cones; covering dimension;
D O I
10.1090/S0002-9939-08-09149-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the dimension of any asymptotic cone over a metric space (X,rho) does not exceed the asymptotic Assouad-Nagata dimension asdim(AN)(X) of X. This improves a result of Dranishnikov and Smith (2007), who showed dim(Y) <= asdim(AN)(X) for all separable subsets Y of special asymptotic cones Cone(omega)(X), where omega is an exponential ultrafilter on natural numbers. We also show that the Assouad-Nagata dimension of the discrete Heisenberg group equals its asymptotic dimension.
引用
收藏
页码:2225 / 2233
页数:9
相关论文
共 50 条
  • [21] On Assouad dimension of products
    Peng, Fengji
    Wang, Wen
    Wen, Shengyou
    CHAOS SOLITONS & FRACTALS, 2017, 104 : 192 - 197
  • [22] Conformal assouad dimension and modulus
    S. Keith
    T. Laakso
    Geometric & Functional Analysis GAFA, 2004, 14 : 1278 - 1321
  • [23] Pointwise Assouad dimension for measures
    Anttila, Roope
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (06) : 2053 - 2078
  • [24] Conformal Assouad dimension and modulus
    Keith, S
    Laakso, T
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (06) : 1278 - 1321
  • [25] THE ASSOUAD SPECTRUM AND THE QUASI-ASSOUAD DIMENSION: A TALE OF TWO SPECTRA
    Fraser, Jonathan M.
    Hare, Kathryn E.
    Hare, Kevin G.
    Troscheit, Sascha
    Yu, Han
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 379 - 387
  • [26] ASSOUAD DIMENSION OF RANDOM PROCESSES
    Howroyd, Douglas C.
    Yu, Han
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (01) : 281 - 290
  • [27] ON THE ASSOUAD DIMENSION AND CONVERGENCE OF METRIC SPACES
    Ishiki, Yoshito
    KODAI MATHEMATICAL JOURNAL, 2020, 43 (03) : 573 - 590
  • [28] The Assouad dimension of randomly generated fractals
    Fraser, Jonathan M.
    Miao, Jun Jie
    Troscheit, Sascha
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 982 - 1011
  • [29] PROPERTIES OF QUASI-ASSOUAD DIMENSION
    Garcia, Ignacio
    Hare, Kathryn
    ANNALES FENNICI MATHEMATICI, 2021, 46 (01): : 279 - 293
  • [30] Lowering the Assouad dimension by quasisymmetric mappings
    Tyson, JT
    ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (02) : 641 - 656