ON THE ASSOUAD DIMENSION AND CONVERGENCE OF METRIC SPACES

被引:0
|
作者
Ishiki, Yoshito [1 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tennodai 1-1-1, Tsukuba, Ibaraki 3058571, Japan
关键词
Assouad dimesnion; Gromov-Hausdorff convergence; ASYMPTOTIC CONES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of pseudo-cones of metric spaces as a generalization of both of the tangent cones and the asymptotic cones. We prove that the Assouad dimension of a metric space is bounded from below by that of any pseudo-cone of it. We exhibit an example containing all compact metric spaces as pseudo-cones, and examples containing all proper length spaces as tangent cones or asymptotic cones.
引用
收藏
页码:573 / 590
页数:18
相关论文
共 50 条
  • [1] Assouad-Nagata dimension and gap for ordered metric spaces
    Erschler, Anna
    Mitrofanov, Ivan
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2023, 98 (02) : 217 - 260
  • [2] Assouad Dimension, Nagata Dimension, and Uniformly Close Metric Tangents
    Le Donne, Enrico
    Rajala, Tapio
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (01) : 21 - 54
  • [3] A characterization of metric subspaces of full Assouad dimension
    Ishiki, Yoshito
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (04) : 363 - 388
  • [4] An intermediate-value property for Assouad dimension of metric space
    Wang, Wen
    Wen, Shengyou
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2016, 209 : 120 - 133
  • [5] The Metric Dimension of Metric Spaces
    Bau, Sheng
    Beardon, Alan F.
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2013, 13 (02) : 295 - 305
  • [6] The Metric Dimension of Metric Spaces
    Sheng Bau
    Alan F. Beardon
    [J]. Computational Methods and Function Theory, 2013, 13 : 295 - 305
  • [7] The Rate of Convergence of Steklov Means on Metric Measure Spaces and Hausdorff Dimension
    Krotov, V. G.
    Prokhorovich, M. A.
    [J]. MATHEMATICAL NOTES, 2011, 89 (1-2) : 156 - 159
  • [8] The rate of convergence of Steklov means on metric measure spaces and Hausdorff dimension
    V. G. Krotov
    M. A. Prokhorovich
    [J]. Mathematical Notes, 2011, 89 : 156 - 159
  • [9] DIMENSION OF METRIC SPACES
    HADJIIVANOV, NG
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1976, 29 (08): : 1085 - 1086
  • [10] DIMENSION IN METRIC SPACES
    MROWKA, S
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A223 - A223