Asymptotic cones and Assouad-Nagata dimension

被引:12
|
作者
Dydak, J. [1 ]
Higes, J. [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Univ Complutense Madrid, Dept Geometria & Topologia, Fac CC Matemat, E-28040 Madrid, Spain
关键词
Assouad-Nagata dimension; asymptotic dimension; asymptotic cones; covering dimension;
D O I
10.1090/S0002-9939-08-09149-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the dimension of any asymptotic cone over a metric space (X,rho) does not exceed the asymptotic Assouad-Nagata dimension asdim(AN)(X) of X. This improves a result of Dranishnikov and Smith (2007), who showed dim(Y) <= asdim(AN)(X) for all separable subsets Y of special asymptotic cones Cone(omega)(X), where omega is an exponential ultrafilter on natural numbers. We also show that the Assouad-Nagata dimension of the discrete Heisenberg group equals its asymptotic dimension.
引用
收藏
页码:2225 / 2233
页数:9
相关论文
共 50 条
  • [41] Geodesic spaces of low Nagata dimension
    Jorgensen, Martina
    Lang, Urs
    ANNALES FENNICI MATHEMATICI, 2022, 47 (01): : 83 - 88
  • [42] NAGATA J - MODERN DIMENSION THEORY
    FLOR, P
    MONATSHEFTE FUR MATHEMATIK, 1966, 70 (04): : 379 - &
  • [44] A nonlinear projection theorem for Assouad dimension and applications
    Fraser, Jonathan M.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (02): : 777 - 797
  • [45] A characterization of metric subspaces of full Assouad dimension
    Ishiki, Yoshito
    JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (04) : 363 - 388
  • [46] Assouad's theorem with dimension independent of the snowflaking
    Naor, Assaf
    Neiman, Ofer
    REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (04) : 1123 - 1142
  • [47] NAGATA,JI - MODERN DIMENSION THEORY
    BUSHAW, D
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1967, 284 (01): : 76 - &
  • [48] The Assouad dimension of self-affine measures on sponges
    Fraser, Jonathan M.
    Kolossvary, Istvan
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (09) : 2974 - 2996
  • [49] On the Assouad dimension of self-similar sets with overlaps
    Fraser, J. M.
    Henderson, A. M.
    Olson, E. J.
    Robinson, J. C.
    ADVANCES IN MATHEMATICS, 2015, 273 : 188 - 214
  • [50] Conformal Assouad dimension as the critical exponent for combinatorial modulus
    Murugan, Mathav
    ANNALES FENNICI MATHEMATICI, 2023, 48 (02): : 453 - 491