An expectation-maximization approach to nonlinear component analysis

被引:39
|
作者
Rosipal, R [1 ]
Girolami, M [1 ]
机构
[1] Univ Paisley, Dept Comp & Informat Syst, Computat Intelligence Res Unit, Paisley PA1 2BE, Renfrew, Scotland
关键词
D O I
10.1162/089976601300014439
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The proposal of considering nonlinear principal component analysis as a kernel eigenvalue problem has provided an extremely powerful method of extracting nonlinear features for a number of classification and regression applications. Whereas the utilization of Mercer kernels makes the problem of computing principal components in, possibly, infinite-demensional feature spaces tractable, there are still the attendant numerical problems of diagonalizing large matrices. In this contribution, we propose an expectation-maximization approach for performing kernel principal component analysis and show this to be a computationally efficient method, especially when the number of data points is large.
引用
收藏
页码:505 / 510
页数:6
相关论文
共 50 条
  • [1] Expectation-maximization approaches to independent component analysis
    Zhong, MJ
    Tang, HW
    Tang, YY
    [J]. NEUROCOMPUTING, 2004, 61 : 503 - 512
  • [2] Expectation-Maximization Approach to Boolean Factor Analysis
    Frolov, Alexander A.
    Husek, Dusan
    Polyakov, Pavel Yu.
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 559 - 566
  • [3] An expectation-maximization approach to attitude sensor calibration
    Cheng, Yang
    Crassidis, John L.
    [J]. SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2, 2008, 130 : 1749 - 1764
  • [4] The Expectation-Maximization approach for Bayesian quantile regression
    Zhao, Kaifeng
    Lian, Heng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 96 : 1 - 11
  • [5] The expectation-maximization algorithm
    Moon, TK
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (06) : 47 - 60
  • [6] Boolean Factor Analysis by Expectation-Maximization Method
    Frolov, Alexander A.
    Husek, Dusan
    Polyakov, Pavel Yu
    [J]. PROCEEDING OF THE THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN COMPUTER INTERACTION (IHCI 2011), 2013, 179 : 243 - 254
  • [7] Expectation-maximization analysis of spatial time series
    Smith, K. W.
    Aretxabaleta, A. L.
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2007, 14 (01) : 73 - 77
  • [8] Expectation-Maximization Approach to Fault Diagnosis With Missing Data
    Zhang, Kangkang
    Gonzalez, Ruben
    Huang, Biao
    Ji, Guoli
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (02) : 1231 - 1240
  • [9] A Stochastic Expectation-Maximization Approach to Shuffled Linear Regression
    Abid, Abubakar
    Zou, James
    [J]. 2018 56TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2018, : 470 - 477
  • [10] A new approach to constrained expectation-maximization for density estimation
    Hong, Hunsop
    Schonfeld, Dan
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3689 - 3692