An expectation-maximization approach to nonlinear component analysis

被引:39
|
作者
Rosipal, R [1 ]
Girolami, M [1 ]
机构
[1] Univ Paisley, Dept Comp & Informat Syst, Computat Intelligence Res Unit, Paisley PA1 2BE, Renfrew, Scotland
关键词
D O I
10.1162/089976601300014439
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The proposal of considering nonlinear principal component analysis as a kernel eigenvalue problem has provided an extremely powerful method of extracting nonlinear features for a number of classification and regression applications. Whereas the utilization of Mercer kernels makes the problem of computing principal components in, possibly, infinite-demensional feature spaces tractable, there are still the attendant numerical problems of diagonalizing large matrices. In this contribution, we propose an expectation-maximization approach for performing kernel principal component analysis and show this to be a computationally efficient method, especially when the number of data points is large.
引用
收藏
页码:505 / 510
页数:6
相关论文
共 50 条
  • [21] Filter pruning via expectation-maximization
    Xu, Sheng
    Li, Yanjing
    Yang, Linlin
    Zhang, Baochang
    Sun, Dianmin
    Liu, Kexin
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (15): : 12807 - 12818
  • [22] Message passing expectation-maximization algorithms
    O'Sullivan, Joseph A.
    [J]. 2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 781 - 786
  • [23] Acoustic multipath identification with expectation-maximization
    Bingham, B
    Mindell, D
    [J]. OCEANS 2003 MTS/IEEE: CELEBRATING THE PAST...TEAMING TOWARD THE FUTURE, 2003, : 2388 - 2396
  • [24] Using expectation-maximization for reinforcement learning
    Dayan, P
    Hinton, GE
    [J]. NEURAL COMPUTATION, 1997, 9 (02) : 271 - 278
  • [25] Online Expectation-Maximization for Click Models
    Markov, Ilya
    Borisov, Alexey
    de Rijke, Maarten
    [J]. CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 2195 - 2198
  • [26] Expectation-maximization for a linear combination of Gaussians
    Gimel'farb, G
    Farag, AA
    El-Baz, A
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 422 - 425
  • [27] Expectation-Maximization Algorithm with Local Adaptivity
    Leung, Shingyu
    Liang, Gang
    Solna, Knut
    Zhao, Hongkai
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (03): : 834 - 857
  • [29] Data Stream Online Clustering Based on Fuzzy Expectation-Maximization Approach
    Deineko, Anastasiia O.
    Zhernova, Polina Ye
    Gordon, Boris
    Zayika, Oleksandr O.
    Pliss, Iryna
    Pabyrivska, Nelya
    [J]. 2018 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP), 2018, : 171 - 176
  • [30] A Novel Approach to Model Error Modelling using the Expectation-Maximization Algorithm
    Delgado, Ramon A.
    Goodwin, Graham C.
    Carvajal, Rodrigo
    Agueero, Juan C.
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 7327 - 7332