Data Stream Online Clustering Based on Fuzzy Expectation-Maximization Approach

被引:0
|
作者
Deineko, Anastasiia O. [1 ]
Zhernova, Polina Ye [2 ]
Gordon, Boris [3 ]
Zayika, Oleksandr O. [1 ]
Pliss, Iryna [4 ]
Pabyrivska, Nelya [5 ]
机构
[1] Kharkiv Natl Univ Radio Elect, Artificial Intelligence Dept, Kharkov, Ukraine
[2] Kharkiv Natl Univ Radio Elect, Syst Engn Dept, Kharkov, Ukraine
[3] Tallinn Univ Technol, Comp Syst Dept, Tallinn, Estonia
[4] Kharkiv Natl Univ Radio Elect, Control Syst Res Lab, Kharkov, Ukraine
[5] Lviv Polytech Natl Univ, Dept Math, Lvov, Ukraine
关键词
big data; dynamic data mining; data stream mining; computational intelligence; EM-algorithm; fuzzy clustering; Kohonen's self-learning; soft clustering;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the paper the online fuzzy clustering recurrent procedure has been introduced that allows the forming of hyperellipsoidal clusters with an arbitrary orientation of the axes is proposed. Such clustering system is the generalization of a number of known algorithms, it is intended to solve tasks within the general problems of Data Stream Mining (DSM) and Dynamic Data Mining (DDM), when information is sequentially fed to processing in online mode.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [1] A variational Expectation-Maximization algorithm for temporal data clustering
    El Assaad, Hani
    Same, Allou
    Govaert, Gerard
    Aknin, Patrice
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 206 - 228
  • [2] Online Expectation-Maximization for Click Models
    Markov, Ilya
    Borisov, Alexey
    de Rijke, Maarten
    [J]. CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 2195 - 2198
  • [3] Expectation-Maximization Approach to Fault Diagnosis With Missing Data
    Zhang, Kangkang
    Gonzalez, Ruben
    Huang, Biao
    Ji, Guoli
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (02) : 1231 - 1240
  • [4] Expectation-Maximization Binary Clustering for Behavioural Annotation
    Garriga, Joan
    Palmer, John R. B.
    Oltra, Aitana
    Bartumeus, Frederic
    [J]. PLOS ONE, 2016, 11 (03):
  • [5] Speed-up for the expectation-maximization algorithm for clustering categorical data
    Jollois, F. -X.
    Nadif, M.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2007, 37 (04) : 513 - 525
  • [6] Speed-up for the expectation-maximization algorithm for clustering categorical data
    F. -X. Jollois
    M. Nadif
    [J]. Journal of Global Optimization, 2007, 37 : 513 - 525
  • [7] EMU: An expectation maximization based approach for clustering uncertain data
    Qin, Biao
    Xia, Yuni
    Li, Fang
    Ge, Jiaqi
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 25 (04) : 1067 - 1083
  • [8] An Online Expectation-Maximization Algorithm for Changepoint Models
    Yildirim, Sinan
    Singh, Sumeetpal S.
    Doucet, Arnaud
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (04) : 906 - 926
  • [9] Hierarchical trie packet classification algorithm based on expectation-maximization clustering
    Bi, Xia-an
    Zhao, Junxia
    [J]. PLOS ONE, 2017, 12 (07):
  • [10] Expectation-Maximization Approach to Boolean Factor Analysis
    Frolov, Alexander A.
    Husek, Dusan
    Polyakov, Pavel Yu.
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 559 - 566