Expectation-Maximization Approach to Fault Diagnosis With Missing Data

被引:69
|
作者
Zhang, Kangkang [1 ,2 ]
Gonzalez, Ruben [2 ]
Huang, Biao [2 ]
Ji, Guoli [1 ]
机构
[1] Xiamen Univ, Dept Automat, Xiamen 361005, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Data-driven approach; expectation-maximization (EM) algorithm; fault diagnosis; missing data; CONTROL LOOP DIAGNOSIS; TOLERANT CONTROL; NEURAL-NETWORK; KALMAN FILTER; SYSTEMS; IDENTIFICATION; MODELS; SPACE; MPC;
D O I
10.1109/TIE.2014.2336635
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a data-driven approach for fault diagnosis in the presence of incomplete monitor data. The expectation-maximization (EM) algorithm is applied to handle missing data in order to obtain a maximum-likelihood solution for the discrete (or categorical) distribution. Because of the nature of categorical distributions, the maximization step of the EM algorithm is shown in this paper to have an easily calculated analytical solution, making this method computationally simple. An experimental study on a ball-and-tube system is investigated to demonstrate advantages of the proposed approach.
引用
收藏
页码:1231 / 1240
页数:10
相关论文
共 50 条
  • [1] Alternative expectation approaches for expectation-maximization missing data imputations in cox regression
    Saglam, Fatih
    Sanli, Tuba
    Cengiz, Mehmet Ali
    Terzi, Yuksel
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (12) : 5966 - 5974
  • [2] Generalized expectation-maximization approach to LPV process identification with randomly missing output data
    Yang, Xianqiang
    Huang, Biao
    Zhao, Yujia
    Lu, Yaojie
    Xiong, Weili
    Gao, Huijun
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 148 : 1 - 8
  • [3] Missing Step Count Data? Step Away From the Expectation-Maximization Algorithm
    Tackney, Mia S.
    Stahl, Daniel
    Williamson, Elizabeth
    Carpenter, James
    [J]. JOURNAL FOR THE MEASUREMENT OF PHYSICAL BEHAVIOUR, 2022, 5 (04) : 205 - 214
  • [4] Data Stream Online Clustering Based on Fuzzy Expectation-Maximization Approach
    Deineko, Anastasiia O.
    Zhernova, Polina Ye
    Gordon, Boris
    Zayika, Oleksandr O.
    Pliss, Iryna
    Pabyrivska, Nelya
    [J]. 2018 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP), 2018, : 171 - 176
  • [5] An expectation-maximization approach to attitude sensor calibration
    Cheng, Yang
    Crassidis, John L.
    [J]. SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2, 2008, 130 : 1749 - 1764
  • [6] Expectation-Maximization Approach to Boolean Factor Analysis
    Frolov, Alexander A.
    Husek, Dusan
    Polyakov, Pavel Yu.
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 559 - 566
  • [7] An expectation-maximization approach to nonlinear component analysis
    Rosipal, R
    Girolami, M
    [J]. NEURAL COMPUTATION, 2001, 13 (03) : 505 - 510
  • [8] The Expectation-Maximization approach for Bayesian quantile regression
    Zhao, Kaifeng
    Lian, Heng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 96 : 1 - 11
  • [9] An expectation-maximization algorithm working on data summary
    Jin, HD
    Leung, KS
    Wong, ML
    [J]. COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2002, : 221 - 226
  • [10] The expectation-maximization algorithm
    Moon, TK
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (06) : 47 - 60