Speed-up for the expectation-maximization algorithm for clustering categorical data

被引:15
|
作者
Jollois, F. -X.
Nadif, M.
机构
[1] Univ Paris 05, CRIP5, F-75270 Paris 06, France
[2] Univ Paul Verlaine Metz, LITA, UFR MIM, F-57045 Metz 1, France
关键词
mixture model; expectation-maximization algorithm; clustering; acceleration; categorical data;
D O I
10.1007/s10898-006-9059-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In model-based cluster analysis, the expectation-maximization (EM) algorithm has a number of desirable properties, but in some situations, this algorithm can be slow to converge. Some variants are proposed to speed-up EM in reducing the time spent in the E-step, in the case of Gaussian mixture. The main aims of such methods is first to speed-up convergence of EM, and second to yield same results (or not so far) than EM itself. In this paper, we compare these methods from categorical data, with the latent class model, and we propose a new variant that sustains better results on synthetic and real data sets, in terms of convergence speed-up and number of misclassified objects.
引用
收藏
页码:513 / 525
页数:13
相关论文
共 50 条
  • [1] Speed-up for the expectation-maximization algorithm for clustering categorical data
    F. -X. Jollois
    M. Nadif
    [J]. Journal of Global Optimization, 2007, 37 : 513 - 525
  • [2] A variational Expectation-Maximization algorithm for temporal data clustering
    El Assaad, Hani
    Same, Allou
    Govaert, Gerard
    Aknin, Patrice
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 206 - 228
  • [3] The expectation-maximization algorithm
    Moon, TK
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (06) : 47 - 60
  • [4] An expectation-maximization algorithm working on data summary
    Jin, HD
    Leung, KS
    Wong, ML
    [J]. COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2002, : 221 - 226
  • [5] Quantum expectation-maximization algorithm
    Miyahara, Hideyuki
    Aihara, Kazuyuki
    Lechner, Wolfgang
    [J]. PHYSICAL REVIEW A, 2020, 101 (01)
  • [6] THE NOISY EXPECTATION-MAXIMIZATION ALGORITHM
    Osoba, Osonde
    Mitaim, Sanya
    Kosko, Bart
    [J]. FLUCTUATION AND NOISE LETTERS, 2013, 12 (03):
  • [7] Hierarchical trie packet classification algorithm based on expectation-maximization clustering
    Bi, Xia-an
    Zhao, Junxia
    [J]. PLOS ONE, 2017, 12 (07):
  • [8] An Expectation-Maximization algorithm for the Wishart mixture model: Application to movement clustering
    Hidot, Sullivan
    Saint-Jean, Christophe
    [J]. PATTERN RECOGNITION LETTERS, 2010, 31 (14) : 2318 - 2324
  • [9] Expectation-Maximization Binary Clustering for Behavioural Annotation
    Garriga, Joan
    Palmer, John R. B.
    Oltra, Aitana
    Bartumeus, Frederic
    [J]. PLOS ONE, 2016, 11 (03):
  • [10] An Expectation-Maximization Algorithm to Compute a Stochastic Factorization From Data
    Barreto, Andre M. S.
    Beirigo, Rafael L.
    Pineau, Joelle
    Precup, Doina
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3329 - 3336