A new approach to constrained expectation-maximization for density estimation

被引:0
|
作者
Hong, Hunsop [1 ]
Schonfeld, Dan [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
关键词
Gaussian mixture model (GMM); maximum entropy penalty; Gibbs density function; expectation-maximization (EM); image reconstruction; sensor field estimation;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we present two density estimation methods based on constrained expectation-maximization (EM) algorithm. We propose a penalty-based maximum-entropy expectation-maximization (MEEM) algorithm to obtain a smooth estimate of the density function. We further propose an attraction-repulsion expectation-maximization (AREM) algorithm for density estimation in order to determine equilibrium between over-smoothing and over-fitting of the estimated density function. Computer simulation results are used to show the effectiveness of the proposed constrained expectation-maximization algorithms in image reconstruction and sensor field estimation from randomly scattered samples.
引用
收藏
页码:3689 / 3692
页数:4
相关论文
共 50 条
  • [1] Constrained Expectation-Maximization Methods for Effective Reinforcement Learning
    Chen, Gang
    Peng, Yiming
    Zhang, Mengjie
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 171 - 178
  • [2] Density estimation using modified expectation-maximization algorithm for a linear combination of gaussians
    Farag, AA
    El-Baz, A
    Gimel'farb, G
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1871 - 1874
  • [3] An expectation-maximization approach to attitude sensor calibration
    Cheng, Yang
    Crassidis, John L.
    [J]. SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2, 2008, 130 : 1749 - 1764
  • [4] Expectation-Maximization Approach to Boolean Factor Analysis
    Frolov, Alexander A.
    Husek, Dusan
    Polyakov, Pavel Yu.
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 559 - 566
  • [5] An expectation-maximization approach to nonlinear component analysis
    Rosipal, R
    Girolami, M
    [J]. NEURAL COMPUTATION, 2001, 13 (03) : 505 - 510
  • [6] The Expectation-Maximization approach for Bayesian quantile regression
    Zhao, Kaifeng
    Lian, Heng
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 96 : 1 - 11
  • [7] The expectation-maximization algorithm
    Moon, TK
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (06) : 47 - 60
  • [8] An approach based on expectation-maximization algorithm for parameter estimation of Lamb wave signals
    Jia, Hongbo
    Zhang, Zhichun
    Liu, Hongwei
    Dai, Fuhong
    Liu, Yanju
    Leng, Jinsong
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 120 : 341 - 355
  • [9] Estimation of acoustic echoes using expectation-maximization methods
    Usama Saqib
    Sharon Gannot
    Jesper Rindom Jensen
    [J]. EURASIP Journal on Audio, Speech, and Music Processing, 2020
  • [10] Estimation of acoustic echoes using expectation-maximization methods
    Saqib, Usama
    Gannot, Sharon
    Jensen, Jesper Rindom
    [J]. EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2020, 2020 (01)