Strong local optimality for bang-bang-singular extremals in single input control problems

被引:3
|
作者
Poggiolini, Laura [1 ]
Stefani, Gianna [1 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Florence, Italy
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Optimal control; bang-bang controls; singular controls; Hamiltonian methods; sufficient conditions; DOUBLE SWITCHING TIME; STRUCTURAL STABILITY; TRAJECTORIES;
D O I
10.1016/j.ifacol.2017.08.2022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider a Mayer problem for a single input control affine dynamics and we give sufficient conditions for strong local optimality of a reference trajectory, consisting of two bang arcs followed by a singular one. We use a Hamiltonian approach and its connection with the second order conditions. A case study is proposed. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6128 / 6133
页数:6
相关论文
共 50 条
  • [21] Optimality conditions for extremals containing bang and inactivated arcs
    Chittaro, Francesca C.
    Poggiolini, Laura
    [J]. 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017, : 1975 - 1980
  • [22] QUADRATIC ORDER CONDITIONS FOR BANG-SINGULAR EXTREMALS
    Aronna, M. Soledad
    Bonnans, J. Frederic
    Dmitruk, Andrei V.
    Lotito, Pablo A.
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (03): : 511 - 546
  • [23] Second-Order Optimality Conditions for Broken Extremals and Bang-Bang Controls: Theory and Applications
    Osmolovskii, Nikolai P.
    Maurer, Helmut
    [J]. ADVANCES IN MATHEMATICAL MODELING, OPTIMIZATION AND OPTIMAL CONTROL, 2016, 109 : 147 - 201
  • [24] Bang-Bang and Singular Controls in Optimal Control Problems with Partial Differential Equations
    Pesch, Hans Josef
    Bechmann, Simon
    Wurst, Jan-Eric
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 7671 - 7678
  • [25] The shooting approach in analyzing bang-bang extremals with simultaneous control switches
    Felgenhauer, Ursula
    [J]. CONTROL AND CYBERNETICS, 2008, 37 (02): : 307 - 327
  • [26] Bang-bang control and singular arcs in reservoir flooding
    Zandvliet, M. J.
    Bosgra, O. H.
    Jansen, J. D.
    Van den Hof, P. M. J.
    Kraaijevanger, J. F. B. M.
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2007, 58 (1-2) : 186 - 200
  • [27] State-local optimality of a bang-bang trajectory: a Hamiltonian approach
    Poggiolini, L
    Stefani, G
    [J]. SYSTEMS & CONTROL LETTERS, 2004, 53 (3-4) : 269 - 279
  • [28] Note on local quadratic growth estimates in bang-bang optimal control problems
    Felgenhauer, Ursula
    [J]. OPTIMIZATION, 2015, 64 (03) : 521 - 537
  • [29] Cyclic coordinate descent in a class of bang-singular-bang problems
    Bayon, L.
    Fortuny Ayuso, P.
    Otero, J. A.
    Suarez, P. M.
    Tasis, C.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 291 : 304 - 316
  • [30] BANG-BANG CONTROL LAW FOR SINGLE-INPUT TIME-INVARIANT PLANT
    DODDS, SJ
    [J]. IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1981, 128 (05): : 227 - 233