Optimality conditions for extremals containing bang and inactivated arcs

被引:1
|
作者
Chittaro, Francesca C. [1 ,2 ]
Poggiolini, Laura [3 ]
机构
[1] Aix Marseille Univ, CNRS, ENSAM, LSIS,UMR 7296, F-13397 Marseille, France
[2] Univ Toulon & Var, CNRS, LSIS, UMR 7296, F-83957 La Garde, France
[3] Univ Florence, Dipartimento Matemat & Informat Ulisse Dini, Via Santa Marta 3, I-50139 Florence, Italy
关键词
D O I
10.1109/CDC.2017.8263938
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a class of optimal control problems with control-affine dynamics and integral cost linear in the absolute value of the control. The Pontryagin extremals associated with such systems are given by (possible) concatenations of bang arcs with singular arcs and with inactivated arcs, that is, arcs where the control is identically zero. We focus on Pontryagin extremals of the form bang-inactive-bang. We use Hamiltonian methods to prove that the coercivity of a suitable second variation associated with the candidate extremal is sufficient to prove its strong-local optimality.
引用
收藏
页码:1975 / 1980
页数:6
相关论文
共 50 条
  • [1] BANG-SINGULAR-BANG EXTREMALS: SUFFICIENT OPTIMALITY CONDITIONS
    Poggiolini, L.
    Stefani, G.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2011, 17 (04) : 469 - 514
  • [2] Bang-singular-bang extremals: sufficient optimality conditions
    L. Poggiolini
    G. Stefani
    [J]. Journal of Dynamical and Control Systems, 2011, 17 : 469 - 514
  • [3] MORSE INDEX AND SUFFICIENT OPTIMALITY CONDITIONS FOR BANG-BANG PONTRYAGIN EXTREMALS
    SARYCHEV, AV
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 180 : 440 - 448
  • [4] Second-Order Optimality Conditions for Broken Extremals and Bang-Bang Controls: Theory and Applications
    Osmolovskii, Nikolai P.
    Maurer, Helmut
    [J]. ADVANCES IN MATHEMATICAL MODELING, OPTIMIZATION AND OPTIMAL CONTROL, 2016, 109 : 147 - 201
  • [5] SUFFICIENT OPTIMALITY CONDITIONS FOR PONTRYAGIN EXTREMALS
    SARYCHEV, AV
    [J]. SYSTEMS & CONTROL LETTERS, 1992, 19 (06) : 451 - 460
  • [6] Strong local optimality for bang-bang-singular extremals in single input control problems
    Poggiolini, Laura
    Stefani, Gianna
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 6128 - 6133
  • [7] SUFFICIENT CONDITIONS OF OPTIMALITY FOR MULTIVALENT FIELDS OF EXTREMALS
    VELICHENKO, VV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1976, 226 (04): : 757 - 760
  • [8] QUADRATIC ORDER CONDITIONS FOR BANG-SINGULAR EXTREMALS
    Aronna, M. Soledad
    Bonnans, J. Frederic
    Dmitruk, Andrei V.
    Lotito, Pablo A.
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (03): : 511 - 546
  • [9] Sufficient optimality conditions for a bang-bang trajectory
    Poggiolini, Laura
    Stefani, Gianna
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 6624 - 6629
  • [10] A case study in strong optimality and structural stability of bang-singular extremals
    Poggiolini, Laura
    Stefani, Gianna
    [J]. GEOMETRIC CONTROL THEORY AND SUB-RIEMANNIAN GEOMETRY, 2014, 4 : 333 - 350