State-local optimality of a bang-bang trajectory: a Hamiltonian approach

被引:28
|
作者
Poggiolini, L [1 ]
Stefani, G [1 ]
机构
[1] Univ Florence, Dipartimento Matemat Appl G Sansone, I-50139 Florence, Italy
关键词
minimum time; bang-bang control; sufficient conditions; second variation; Hamiltonian methods;
D O I
10.1016/j.sysconle.2004.05.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give a sufficient condition for a bang-bang extremal (ξ) over cap to be a strong local optimizer for the minimum time problem with fixed endpoints. We underline that the conditions imply that the optimum is local with respect to the state and not necessarily to the final time. Moreover, it is given through a finite-dimensional minimization problem, hence is suited for numerical verification. A geometric interpretation through the projection of the Hamiltonian flow on the state space is also given. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 50 条
  • [1] Strong optimality or a bang-bang trajectory
    Agrachev, AA
    Stefani, G
    Zezza, P
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (04) : 991 - 1014
  • [2] STRONG LOCAL OPTIMALITY FOR A BANG-BANG TRAJECTORY IN A MAYER PROBLEM
    Poggiolini, Laura
    Spadini, Marco
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (01) : 140 - 161
  • [3] Minimum time optimality of a bang-bang trajectory
    Poggiolini, L
    Stefani, G
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1922 - 1925
  • [4] Time optimality of a bang-bang trajectory with maple
    Stefani, G
    Zezza, PL
    [J]. LAGRANGIAN AND HAMILTONIAN METHODS IN NONLINEAR CONTROL 2003, 2003, : 135 - 140
  • [5] Sufficient optimality conditions for a bang-bang trajectory
    Poggiolini, Laura
    Stefani, Gianna
    [J]. PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 6624 - 6629
  • [6] Sufficient Optimality Conditions for a Bang-bang Trajectory in a Bolza Problem
    Poggiolini, Laura
    Spadini, Marco
    [J]. MATHEMATICAL CONTROL THEORY AND FINANCE, 2008, : 337 - 357
  • [7] On the optimality of parametrized families of bang-bang trajectories
    Noble, J
    Schaettler, H
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (01) : 351 - 362
  • [8] Optimality properties of controls with bang-bang components in problems with semilinear state equation
    Felgenhauer, U
    [J]. CONTROL AND CYBERNETICS, 2005, 34 (03): : 763 - 785
  • [9] A sufficient optimality condition for bang-bang controls on local time-optimal control problems
    Zhu, JH
    Cai, JP
    [J]. PROCEEDINGS OF THE 4TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-4, 2002, : 250 - 254
  • [10] Second order optimality conditions for bang-bang control problems
    Maurer, H
    Osmolovskii, NP
    [J]. CONTROL AND CYBERNETICS, 2003, 32 (03): : 555 - 584