The degree-diameter problem for sparse graph classes

被引:0
|
作者
Pineda-Villavicencio, Guillermo [1 ]
Wood, David R. [2 ]
机构
[1] Federat Univ Australia, Ctr Informat & Appl Optimisat, Ballarat, Vic, Australia
[2] Monash Univ, Sch Math Sci, Melbourne, Vic 3004, Australia
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2015年 / 22卷 / 02期
基金
澳大利亚研究理事会;
关键词
degree-diameter problem; treewidth; arboricity; sparse graph; surface graph; apex-minor-free graph; EXTREMAL FUNCTION; PLANAR GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The degree-diameter problem asks for the maximum number of vertices in a graph with maximum degree Delta and diameter k. For fixed k, the answer is Theta(Delta(k)). We consider the degree-diameter problem for particular classes of sparse graphs, and establish the following results. For graphs of bounded average degree the answer is Theta(Delta(k-1)), and for graphs of bounded arboricity the answer is Theta(Delta([k/2])) in both cases for fixed k. For graphs of given treewidth, we determine the the maximum number of vertices up to a constant factor. Other precise bounds are given for graphs embeddable on a given surface and apex-minor-free graphs.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Packing Two Copies of a Sparse Graph into a Graph with Restrained Maximum Degree
    Wang, Hong
    JOURNAL OF GRAPH THEORY, 2009, 62 (02) : 178 - 187
  • [42] Erratum to “On a Classical Theorem on the Diameter and Minimum Degree of a Graph”
    Vernica HERNáNDEZ
    Domingo PESTANA
    José M.RODRíGUEZ
    Acta Mathematica Sinica,English Series, 2018, (12) : 1907 - 1910
  • [43] k-Diameter of Circulant Graph with Degree 3
    张先迪
    李曼荔
    Journal of Electronic Science and Technology of China, 2005, (03) : 280 - 283
  • [44] THE MINIMUM ORDER OF A CAYLEY GRAPH WITH GIVEN DEGREE AND DIAMETER
    HAMIDOUNE, YO
    NETWORKS, 1993, 23 (04) : 283 - 287
  • [45] Erratum to “On a Classical Theorem on the Diameter and Minimum Degree of a Graph”
    Vernica HERNáNDEZ
    Domingo PESTANA
    José M.RODRíGUEZ
    ActaMathematicaSinica, 2018, 34 (12) : 1907 - 1910
  • [46] Erratum to “On a Classical Theorem on the Diameter and Minimum Degree of a Graph”
    Verónica Hernández
    Domingo Pestana
    José M. Rodríguez
    Acta Mathematica Sinica, English Series, 2018, 34 : 1907 - 1910
  • [47] Decomposition of Sparse Graphs into Forests and a Graph with Bounded Degree
    Kim, Seog-Jin
    Kostochka, Alexandr V.
    West, Douglas B.
    Wu, Hehui
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2013, 74 (04) : 369 - 391
  • [48] Improved lower bounds on the degree–diameter problem
    Tao Zhang
    Gennian Ge
    Journal of Algebraic Combinatorics, 2019, 49 : 135 - 146
  • [49] On the Complexity of List H-Packing for Sparse Graph Classes
    Gima, Tatsuya
    Hanaka, Tesshu
    Kobayashi, Yasuaki
    Otachi, Yota
    Shirai, Tomohito
    Suzuki, Akira
    Tamura, Yuma
    Zhou, Xiao
    WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2024, 2024, 14549 : 421 - 435
  • [50] Fixed-Parameter Tractable Distances to Sparse Graph Classes
    Bulian, Jannis
    Dawar, Anuj
    ALGORITHMICA, 2017, 79 (01) : 139 - 158