The degree-diameter problem for sparse graph classes

被引:0
|
作者
Pineda-Villavicencio, Guillermo [1 ]
Wood, David R. [2 ]
机构
[1] Federat Univ Australia, Ctr Informat & Appl Optimisat, Ballarat, Vic, Australia
[2] Monash Univ, Sch Math Sci, Melbourne, Vic 3004, Australia
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2015年 / 22卷 / 02期
基金
澳大利亚研究理事会;
关键词
degree-diameter problem; treewidth; arboricity; sparse graph; surface graph; apex-minor-free graph; EXTREMAL FUNCTION; PLANAR GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The degree-diameter problem asks for the maximum number of vertices in a graph with maximum degree Delta and diameter k. For fixed k, the answer is Theta(Delta(k)). We consider the degree-diameter problem for particular classes of sparse graphs, and establish the following results. For graphs of bounded average degree the answer is Theta(Delta(k-1)), and for graphs of bounded arboricity the answer is Theta(Delta([k/2])) in both cases for fixed k. For graphs of given treewidth, we determine the the maximum number of vertices up to a constant factor. Other precise bounds are given for graphs embeddable on a given surface and apex-minor-free graphs.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Degree/diameter problem for mixed graphs
    Lopez, Nacho
    Perez-Roses, Hebert
    2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 2 - 9
  • [32] NEW RESULTS FOR THE DEGREE DIAMETER PROBLEM
    DINNEEN, MJ
    HAFNER, PR
    NETWORKS, 1994, 24 (07) : 359 - 367
  • [33] Degree Diameter Problem on Silicate Network
    Akhtar, Muhammad Shahzad
    Bokhary, Syed Ahtsham Ul Haq
    UTILITAS MATHEMATICA, 2020, 115 : 181 - 197
  • [34] Graph Augmentation Problem with Diameter Requirements
    Ishii, Toshimasa
    2012 THIRD INTERNATIONAL CONFERENCE ON NETWORKING AND COMPUTING (ICNC 2012), 2012, : 393 - 398
  • [35] On the Matching Problem for Special Graph Classes
    Thanh Minh Hoang
    25TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY - CCC 2010, 2010, : 139 - 150
  • [36] Kernelization Using Structural Parameters on Sparse Graph Classes
    Gajarsky, Jakub
    Hlineny, Petr
    Obdrzalek, Jan
    Ordyniak, Sebastian
    Reidl, Felix
    Rossmanith, Peter
    Villaamil, Fernando Sanchez
    Sikdar, Somnath
    ALGORITHMS - ESA 2013, 2013, 8125 : 529 - 540
  • [37] The Normal Graph Conjecture for Two Classes of Sparse Graphs
    Anne Berry
    Annegret K. Wagler
    Graphs and Combinatorics, 2018, 34 : 139 - 157
  • [38] The Normal Graph Conjecture for Two Classes of Sparse Graphs
    Berry, Anne
    Wagler, Annegret K.
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 139 - 157
  • [39] Anti-Path Cover on Sparse Graph Classes
    Dvorak, Pavel
    Knop, Dusan
    Masarik, Tomas
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2016, (233): : 82 - 86
  • [40] Kernelization using structural parameters on sparse graph classes
    Gajarsky, Jakub
    Hlineny, Petr
    Obdrzalek, Jan
    Ordyniak, Sebastian
    Reidl, Felix
    Rossmanith, Peter
    Villaamil, Fernando Sanchez
    Sikdar, Somnath
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 84 : 219 - 242