The degree-diameter problem for sparse graph classes

被引:0
|
作者
Pineda-Villavicencio, Guillermo [1 ]
Wood, David R. [2 ]
机构
[1] Federat Univ Australia, Ctr Informat & Appl Optimisat, Ballarat, Vic, Australia
[2] Monash Univ, Sch Math Sci, Melbourne, Vic 3004, Australia
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2015年 / 22卷 / 02期
基金
澳大利亚研究理事会;
关键词
degree-diameter problem; treewidth; arboricity; sparse graph; surface graph; apex-minor-free graph; EXTREMAL FUNCTION; PLANAR GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The degree-diameter problem asks for the maximum number of vertices in a graph with maximum degree Delta and diameter k. For fixed k, the answer is Theta(Delta(k)). We consider the degree-diameter problem for particular classes of sparse graphs, and establish the following results. For graphs of bounded average degree the answer is Theta(Delta(k-1)), and for graphs of bounded arboricity the answer is Theta(Delta([k/2])) in both cases for fixed k. For graphs of given treewidth, we determine the the maximum number of vertices up to a constant factor. Other precise bounds are given for graphs embeddable on a given surface and apex-minor-free graphs.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] The Normal Graph Conjecture for Classes of Sparse Graphs
    Berry, Anne
    Wagler, Annegret
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2013, 2013, 8165 : 64 - 75
  • [22] On a Classical Theorem on the Diameter and Minimum Degree of a Graph
    Hernandez, Veronica
    Pestana, Domingo
    Rodriguez, Jose M.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (11) : 1477 - 1503
  • [23] On a Classical Theorem on the Diameter and Minimum Degree of a Graph
    Verónica HERNNDEZ
    Domingo PESTANA
    José M.RODRIGUEZ
    Acta Mathematica Sinica, 2017, 33 (11) : 1477 - 1503
  • [24] On a Classical Theorem on the Diameter and Minimum Degree of a Graph
    Verónica HERNNDEZ
    Domingo PESTANA
    José M.RODRIGUEZ
    Acta Mathematica Sinica,English Series, 2017, (11) : 1477 - 1503
  • [25] On a classical theorem on the diameter and minimum degree of a graph
    Verónica Hernández
    Domingo Pestana
    José M. Rodríguez
    Acta Mathematica Sinica, English Series, 2017, 33 : 1477 - 1503
  • [26] Steiner diameter, maximum degree and size of a graph
    Mao, Yaping
    Dankelmann, Peter
    Wang, Zhao
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [27] DEGREE/DIAMETER PROBLEM FOR TREES AND PSEUDOTREES
    Christou, Michalis
    Iliopoulos, Costas S.
    Miller, Mirka
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2013, 10 (04) : 377 - 389
  • [28] Degree diameter problem on honeycomb networks
    Holub, Premysl
    Miller, Mirka
    Perez-Roses, Hebert
    Ryan, Joe
    DISCRETE APPLIED MATHEMATICS, 2014, 179 : 139 - 151
  • [29] Degree diameter problem on triangular networks
    Holub, Premysl
    Ryan, Joe
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2015, 63 : 333 - 345
  • [30] A family of graphs and the degree/diameter problem
    Exoo, G
    JOURNAL OF GRAPH THEORY, 2001, 37 (02) : 118 - 124