The degree-diameter problem for sparse graph classes

被引:0
|
作者
Pineda-Villavicencio, Guillermo [1 ]
Wood, David R. [2 ]
机构
[1] Federat Univ Australia, Ctr Informat & Appl Optimisat, Ballarat, Vic, Australia
[2] Monash Univ, Sch Math Sci, Melbourne, Vic 3004, Australia
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2015年 / 22卷 / 02期
基金
澳大利亚研究理事会;
关键词
degree-diameter problem; treewidth; arboricity; sparse graph; surface graph; apex-minor-free graph; EXTREMAL FUNCTION; PLANAR GRAPHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The degree-diameter problem asks for the maximum number of vertices in a graph with maximum degree Delta and diameter k. For fixed k, the answer is Theta(Delta(k)). We consider the degree-diameter problem for particular classes of sparse graphs, and establish the following results. For graphs of bounded average degree the answer is Theta(Delta(k-1)), and for graphs of bounded arboricity the answer is Theta(Delta([k/2])) in both cases for fixed k. For graphs of given treewidth, we determine the the maximum number of vertices up to a constant factor. Other precise bounds are given for graphs embeddable on a given surface and apex-minor-free graphs.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] THE DEGREE-DIAMETER PROBLEM FOR OUTERPLANAR GRAPHS
    Dankelmann, Peter
    Jonck, Elizabeth
    Vetrik, Tomas
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 823 - 834
  • [2] Improved lower bounds on the degree-diameter problem
    Zhang, Tao
    Ge, Gennian
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2019, 49 (02) : 135 - 146
  • [3] New record graphs in the degree-diameter problem
    Loz, Eyal
    Siraj, Jozef
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 41 : 63 - 80
  • [4] The degree-diameter problem for circulant graphs of degree 8 and 9
    Lewis, Robert R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [5] t-STRONG CLIQUES AND THE DEGREE-DIAMETER PROBLEM
    Sleszynska-Nowak, M.
    Debski, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 1057 - 1061
  • [6] The degree-diameter problem for plane graphs with pentagonal faces
    DU Preez, Brandon
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2025, 91 : 104 - 147
  • [7] t-STRONG CLIQUES AND THE DEGREE-DIAMETER PROBLEM
    Debski, Michal
    Sleszynska-Nowak, Malgorzata
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (04) : 3017 - 3029
  • [8] The Degree-Diameter Problem for Claw-Free Graphs and Hypergraphs
    Dankelmann, Peter
    Vetrik, Tomas
    JOURNAL OF GRAPH THEORY, 2014, 75 (02) : 105 - 123
  • [9] The degree-diameter problem for circulant graphs of degrees 10 and 11
    Lewis, Robert R.
    DISCRETE MATHEMATICS, 2018, 341 (09) : 2553 - 2566
  • [10] The degree-diameter problem for several varieties of Cayley graphs I: The Abelian case
    Dougherty, R
    Faber, V
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 17 (03) : 478 - 519