Convergence, unanimity and disagreement in majority dynamics on unimodular graphs and random graphs

被引:32
|
作者
Benjamini, Itai [1 ]
Chan, Siu-On [3 ]
O'Donnell, Ryan [2 ]
Tamuz, Omer [3 ]
Tan, Li-Yang [4 ]
机构
[1] Weizmann Inst Sci, Fac Math & Comp Sci, IL-76100 Rehovot, Israel
[2] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
[3] Microsoft Res New England, Cambridge, England
[4] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
关键词
Majority dynamics; Random graphs; INFINITE-GRAPHS;
D O I
10.1016/j.spa.2016.02.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In majority dynamics, agents located at the vertices of an undirected simple graph update their binary opinions synchronously by adopting those of the majority of their neighbors. On infinite unimodular transitive graphs we show that the opinion of each agent almost surely either converges, or else eventually oscillates with period two; this is known to hold for finite graphs, but not for all infinite graphs. On Erdos-Renyi random graphs with degrees Omega(root n), we show that agents eventually all agree, with constant probability. Conversely, on random 4-regular finite graphs, we show that with high probability different agents converge to different opinions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2719 / 2733
页数:15
相关论文
共 50 条
  • [41] METASTABILITY FOR GLAUBER DYNAMICS ON RANDOM GRAPHS
    Dommers, S.
    Den Hollander, F.
    Jovanovski, O.
    Nardi, F. R.
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2130 - 2158
  • [42] Dynamics of excitable nodes on random graphs
    K MANCHANDA
    T UMESHKANTA SINGH
    R RAMASWAMY
    Pramana, 2011, 77 : 803 - 809
  • [43] Constrained Markovian Dynamics of Random Graphs
    Coolen, A. C. C.
    De Martino, A.
    Annibale, A.
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (06) : 1035 - 1067
  • [44] Agreement dynamics on directed random graphs
    Lipowski, Adam
    Lipowska, Dorota
    Ferreira, Antonio Luis
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [45] Dynamics of excitable nodes on random graphs
    Manchanda, K.
    Singh, T. Umeshkanta
    Ramaswamy, R.
    PRAMANA-JOURNAL OF PHYSICS, 2011, 77 (05): : 803 - 809
  • [46] NER automata dynamics on random graphs
    Hernandez, G.
    Salinas, L.
    RECENT PROGRESS IN COMPUTATIONAL SCIENCES AND ENGINEERING, VOLS 7A AND 7B, 2006, 7A-B : 203 - +
  • [47] Consensus dynamics on random rectangular graphs
    Estrada, Ernesto
    Sheerin, Matthew
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 323 : 20 - 26
  • [48] Best response dynamics on random graphs
    Chellig, Jordan
    Durbac, Calina
    Fountoulakis, Nikolaos
    GAMES AND ECONOMIC BEHAVIOR, 2022, 131 : 141 - 170
  • [49] Dynamics of hot random hyperbolic graphs
    Papadopoulos, Fragkiskos
    Zambirinis, Sofoclis
    PHYSICAL REVIEW E, 2022, 105 (02)
  • [50] On majority domination in graphs
    Holm, TS
    DISCRETE MATHEMATICS, 2001, 239 (1-3) : 1 - 12